// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include class AvgPoolMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline AvgPoolMicrokernelTester& n(size_t n) { assert(n != 0); this->n_ = n; return *this; } inline size_t n() const { return this->n_; } inline AvgPoolMicrokernelTester& s(size_t s) { assert(s != 0); this->s_ = s; return *this; } inline size_t s() const { return this->s_; } inline AvgPoolMicrokernelTester& kh(size_t kh) { assert(kh != 0); this->kh_ = kh; return *this; } inline size_t kh() const { return this->kh_; } inline AvgPoolMicrokernelTester& kw(size_t kw) { assert(kw != 0); this->kw_ = kw; return *this; } inline size_t kw() const { return this->kw_; } inline size_t ks() const { return kh() * kw(); } inline size_t packed_ks() const { if (ks() <= mr()) { return mr(); } else { return (ks() - mr()) % qr() == 0 ? ks() : ((ks() - mr()) / qr() + 1) * qr() + mr(); } } inline AvgPoolMicrokernelTester& mr(size_t mr) { assert(mr != 0); this->mr_ = mr; return *this; } inline size_t mr() const { return this->mr_; } inline AvgPoolMicrokernelTester& qr(size_t qr) { assert(qr != 0); this->qr_ = qr; return *this; } inline size_t qr() const { return this->qr_; } inline AvgPoolMicrokernelTester& kc(size_t kc) { assert(kc != 0); this->kc_ = kc; return *this; } inline size_t kc() const { return this->kc_; } inline AvgPoolMicrokernelTester& x_stride(size_t x_stride) { assert(x_stride != 0); this->x_stride_ = x_stride; return *this; } inline size_t x_stride() const { if (this->x_stride_ == 0) { return kc(); } else { assert(this->x_stride_ >= kc()); return this->x_stride_; } } inline AvgPoolMicrokernelTester& y_stride(size_t y_stride) { assert(y_stride != 0); this->y_stride_ = y_stride; return *this; } inline size_t y_stride() const { if (this->y_stride_ == 0) { return kc(); } else { assert(this->y_stride_ >= kc()); return this->y_stride_; } } inline AvgPoolMicrokernelTester& x_scale(float x_scale) { assert(x_scale > 0.0f); assert(std::isnormal(x_scale)); this->x_scale_ = x_scale; return *this; } inline float x_scale() const { return this->x_scale_; } inline AvgPoolMicrokernelTester& x_zero_point(uint8_t x_zero_point) { this->x_zero_point_ = x_zero_point; return *this; } inline uint8_t x_zero_point() const { return this->x_zero_point_; } inline AvgPoolMicrokernelTester& y_scale(float y_scale) { assert(y_scale > 0.0f); assert(std::isnormal(y_scale)); this->y_scale_ = y_scale; return *this; } inline float y_scale() const { return this->y_scale_; } inline AvgPoolMicrokernelTester& y_zero_point(uint8_t y_zero_point) { this->y_zero_point_ = y_zero_point; return *this; } inline uint8_t y_zero_point() const { return this->y_zero_point_; } inline AvgPoolMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline AvgPoolMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline AvgPoolMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_q8_avgpool_up_ukernel_function avgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); std::vector y_fp(n() * kc()); std::vector y_acc(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(u8rng)); std::fill(y.begin(), y.end(), 0xA5); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Prepare quantization parameters. xnn_q8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); break; } const xnn_q8_avgpool_params scalar_quantization_params = xnn_init_scalar_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_acc[i * kc() + k] = acc; y_ref[i * kc() + k] = xnn_avgpool_quantize(acc, scalar_quantization_params); y_fp[i * kc() + k] = float(acc) * (x_scale() / (y_scale() * float(ks()))) + float(y_zero_point()); y_fp[i * kc() + k] = std::min(y_fp[i * kc() + k], float(qmax())); y_fp[i * kc() + k] = std::max(y_fp[i * kc() + k], float(qmin())); } } // Call optimized micro-kernel. avgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), y.data(), kh() * s() * sizeof(void*), (y_stride() - kc()) * sizeof(uint8_t), &quantization_params); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(uint32_t(y[i * y_stride() + k]), uint32_t(qmax())) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(uint32_t(y[i * y_stride() + k]), uint32_t(qmin())) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(float(int32_t(y[i * y_stride() + k])), y_fp[i * kc() + k], 0.5f) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc() << ", acc = " << y_acc[i * kc() + k]; ASSERT_EQ(uint32_t(y_ref[i * kc() + k]), uint32_t(y[i * y_stride() + k])) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc() << ", acc = " << y_acc[i * kc() + k]; } } } } void Test(xnn_q8_avgpool_mp_ukernel_function avgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector> buf(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); std::vector y_fp(n() * kc()); std::vector y_acc(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(u8rng)); std::fill(y.begin(), y.end(), 0xA5); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Prepare quantization parameters. xnn_q8_avgpool_params quantization_params = { }; switch (variant) { case Variant::Native: quantization_params = xnn_init_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); break; case Variant::Scalar: quantization_params = xnn_init_scalar_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); break; } const xnn_q8_avgpool_params scalar_quantization_params = xnn_init_scalar_q8_avgpool_params( -int32_t(x_zero_point()) * int32_t(ks()), x_scale() / (y_scale() * float(ks())), y_zero_point(), qmin(), qmax()); // Compute reference results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { int32_t acc = scalar_quantization_params.scalar.bias; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_acc[i * kc() + k] = acc; y_ref[i * kc() + k] = xnn_avgpool_quantize(acc, scalar_quantization_params); y_fp[i * kc() + k] = float(acc) * (x_scale() / (y_scale() * float(ks()))) + float(y_zero_point()); y_fp[i * kc() + k] = std::min(y_fp[i * kc() + k], float(qmax())); y_fp[i * kc() + k] = std::max(y_fp[i * kc() + k], float(qmin())); } } // Call optimized micro-kernel. avgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), buf.data(), y.data(), (kh() * s() - (packed_ks() - qr())) * sizeof(void*), (y_stride() - kc()) * sizeof(uint8_t), &quantization_params); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(uint32_t(y[i * y_stride() + k]), uint32_t(qmax())) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(uint32_t(y[i * y_stride() + k]), uint32_t(qmin())) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(float(int32_t(y[i * y_stride() + k])), y_fp[i * kc() + k], 0.5f) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc() << ", acc = " << y_acc[i * kc() + k]; ASSERT_EQ(uint32_t(y_ref[i * kc() + k]), uint32_t(y[i * y_stride() + k])) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc() << ", acc = " << y_acc[i * kc() + k]; } } } } void Test(xnn_f32_avgpool_up_ukernel_function avgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), std::nanf("")); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Compute reference results, without clamping. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { float acc = 0.0f; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_ref[i * kc() + k] = acc / float(ks()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& y_value : y_ref) { y_value = std::max(std::min(y_value, y_max), y_min); } // Prepare output parameters. xnn_f32_avgpool_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_avgpool_params( 1.0f / float(ks()), y_min, y_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_avgpool_params( 1.0f / float(ks()), y_min, y_max); break; } // Call optimized micro-kernel. avgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), y.data(), kh() * s() * sizeof(void*), (y_stride() - kc()) * sizeof(float), ¶ms); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(y[i * y_stride() + k], y_max) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(y[i * y_stride() + k], y_min) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc(); } } } } void Test(xnn_f32_avgpool_mp_ukernel_function avgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector> buf(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), std::nanf("")); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Compute reference results, without clamping. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { float acc = 0.0f; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_ref[i * kc() + k] = acc / float(ks()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& y_value : y_ref) { y_value = std::max(std::min(y_value, y_max), y_min); } // Prepare output parameters. xnn_f32_avgpool_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_avgpool_params( 1.0f / float(ks()), y_min, y_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_avgpool_params( 1.0f / float(ks()), y_min, y_max); break; } // Call optimized micro-kernel. avgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), buf.data(), y.data(), (kh() * s() - (packed_ks() - qr())) * sizeof(void*), (y_stride() - kc()) * sizeof(float), ¶ms); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(y[i * y_stride() + k], y_max) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(y[i * y_stride() + k], y_min) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc(); } } } } void Test(xnn_f32_pavgpool_up_ukernel_function pavgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(), rng); auto f32mrng = std::bind(std::uniform_real_distribution(0.1f, 0.5f), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector m(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32irng)); std::generate(m.begin(), m.end(), std::ref(f32mrng)); std::fill(y.begin(), y.end(), std::nanf("")); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Compute reference results, without clamping. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { float acc = 0.0f; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_ref[i * kc() + k] = acc * m[i]; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& y_value : y_ref) { y_value = std::max(std::min(y_value, y_max), y_min); } // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(y_min, y_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(y_min, y_max); break; } // Call optimized micro-kernel. pavgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), m.data(), y.data(), kh() * s() * sizeof(void*), (y_stride() - kc()) * sizeof(float), &output_params); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(y[i * y_stride() + k], y_max) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(y[i * y_stride() + k], y_min) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc(); } } } } void Test(xnn_f32_pavgpool_mp_ukernel_function pavgpool, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(), rng); auto f32mrng = std::bind(std::uniform_real_distribution(0.1f, 0.5f), rng); std::vector indirect_x(packed_ks() + (n() - 1) * s() * kh()); std::vector x((indirect_x.size() - 1) * x_stride() + kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector> buf(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector zero(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector m(kc() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y((n() - 1) * y_stride() + kc()); std::vector y_ref(n() * kc()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32irng)); std::generate(m.begin(), m.end(), std::ref(f32mrng)); std::fill(y.begin(), y.end(), std::nanf("")); for (size_t i = 0; i < indirect_x.size(); i++) { indirect_x[i] = x.data() + i * x_stride(); } std::shuffle(indirect_x.begin(), indirect_x.end(), rng); // Compute reference results, without clamping. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { float acc = 0.0f; for (size_t j = 0; j < ks(); j++) { acc += indirect_x[i * s() * kh() + j][k]; } y_ref[i * kc() + k] = acc * m[i]; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range; const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range; // Clamp reference results. for (float& y_value : y_ref) { y_value = std::max(std::min(y_value, y_max), y_min); } // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(y_min, y_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(y_min, y_max); break; } // Call optimized micro-kernel. pavgpool(n(), ks(), kc(), indirect_x.data(), zero.data(), m.data(), buf.data(), y.data(), (kh() * s() - (packed_ks() - qr())) * sizeof(void*), (y_stride() - kc()) * sizeof(float), &output_params); // Verify results. for (size_t i = 0; i < n(); i++) { for (size_t k = 0; k < kc(); k++) { ASSERT_LE(y[i * y_stride() + k], y_max) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_GE(y[i * y_stride() + k], y_min) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", kc = " << kc(); ASSERT_NEAR(y[i * y_stride() + k], y_ref[i * kc() + k], std::abs(y_ref[i * kc() + k]) * 1.0e-6) << "at pixel " << i << ", channel " << k << ", n = " << n() << ", ks = " << kh() << "x" << kw() << " (" << ks() << "), kc = " << kc(); } } } } private: size_t n_{1}; size_t s_{1}; size_t kh_{1}; size_t kw_{1}; size_t mr_{1}; size_t qr_{1}; size_t kc_{1}; size_t x_stride_{0}; size_t y_stride_{0}; float x_scale_{1.25f}; float y_scale_{0.75f}; uint8_t x_zero_point_{121}; uint8_t y_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };