// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include class VUnOpMicrokernelTester { public: enum class OpType { Sigmoid, }; enum class Variant { Native, Scalar, }; inline VUnOpMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline VUnOpMicrokernelTester& inplace(bool inplace) { this->inplace_ = inplace; return *this; } inline bool inplace() const { return this->inplace_; } inline VUnOpMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline VUnOpMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline VUnOpMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f32_vunary_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-125.0f, 125.0f), rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Sigmoid: { const double e = std::exp(double(x_data[i])); y_ref[i] = e / (1.0 + e); break; } } } const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_max = accumulated_range > 0.0f ? (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : +std::numeric_limits::infinity(); const float y_min = accumulated_range > 0.0f ? (accumulated_min + accumulated_range / 255.0f * float(qmin())) : -std::numeric_limits::infinity(); for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(y_ref[i], y_max), y_min); } // Prepare output parameters. xnn_f32_output_params output_params = { }; switch (variant) { case Variant::Native: output_params = xnn_init_f32_output_params(y_min, y_max); break; case Variant::Scalar: output_params = xnn_init_scalar_f32_output_params(y_min, y_max); break; } // Call optimized micro-kernel. vunary(batch_size() * sizeof(float), x_data, y.data(), &output_params); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], 5.0e-6) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } private: size_t batch_size_{1}; bool inplace_{false}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };