/**************************************************************************** * Ralink Tech Inc. * Taiwan, R.O.C. * * (c) Copyright 2002, Ralink Technology, Inc. * * All rights reserved. Ralink's source code is an unpublished work and the * use of a copyright notice does not imply otherwise. This source code * contains confidential trade secret material of Ralink Tech. Any attemp * or participation in deciphering, decoding, reverse engineering or in any * way altering the source code is stricitly prohibited, unless the prior * written consent of Ralink Technology, Inc. is obtained. ***************************************************************************/ #ifndef CRYPT_GPL_ALGORITHM /**************************************************************************** Module Name: SHA2 Abstract: FIPS 180-2: Secure Hash Standard (SHS) Revision History: Who When What -------- ---------- ------------------------------------------ Eddy 2008/11/24 Create SHA1 Eddy 2008/07/23 Create SHA256 ***************************************************************************/ #endif /* CRYPT_GPL_ALGORITHM */ #ifdef CRYPT_TESTPLAN #include "crypt_testplan.h" #else #include "rt_config.h" #endif /* CRYPT_TESTPLAN */ #ifdef CRYPT_GPL_ALGORITHM #if defined(__cplusplus) extern "C" { #endif #ifdef _MSC_VER #pragma intrinsic(memcpy) #endif #if 0 && defined(_MSC_VER) #define rotl32 _lrotl #define rotr32 _lrotr #else #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) #define rotr32(x,n) (((x) >> n) | ((x) << (32 - n))) #endif #if !defined(bswap_32) #define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00)) #endif #ifdef __BIG_ENDIAN #undef SWAP_BYTES #else #define SWAP_BYTES #endif #if 0 #define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #else /* Thanks to Rich Schroeppel and Colin Plumb for the following */ #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) #endif /* round transforms for SHA256 and SHA512 compression functions */ #define vf(n,i) v[(n - i) & 7] #define hf(i) (p[i & 15] += \ g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) #define v_cycle(i,j) \ vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \ + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \ vf(3,i) += vf(7,i); \ vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) #if defined(SHA_224) || defined(SHA_256) #define SHA256_MASK (SHA256_BLOCK_SIZE - 1) #if defined(SWAP_BYTES) #define bsw_32(p,n) \ { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } #else #define bsw_32(p,n) #endif #define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) #define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) #define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) #define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) #define k_0 k256 /* rotated SHA256 round definition. Rather than swapping variables as in */ /* FIPS-180, different variables are 'rotated' on each round, returning */ /* to their starting positions every eight rounds */ #define q(n) v##n #define one_cycle(a,b,c,d,e,f,g,h,k,w) \ q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) /* SHA256 mixing data */ const uint_32t k256[64] = { 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, }; /* Compile 64 bytes of hash data into SHA256 digest value */ /* NOTE: this routine assumes that the byte order in the */ /* ctx->wbuf[] at this point is such that low address bytes */ /* in the ORIGINAL byte stream will go into the high end of */ /* words on BOTH big and little endian systems */ void_ret sha256_compile(sha256_ctx ctx[1]) { #if !defined(UNROLL_SHA2) uint_32t j, *p = ctx->wbuf, v[8]; memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); for(j = 0; j < 64; j += 16) { v_cycle( 0, j); v_cycle( 1, j); v_cycle( 2, j); v_cycle( 3, j); v_cycle( 4, j); v_cycle( 5, j); v_cycle( 6, j); v_cycle( 7, j); v_cycle( 8, j); v_cycle( 9, j); v_cycle(10, j); v_cycle(11, j); v_cycle(12, j); v_cycle(13, j); v_cycle(14, j); v_cycle(15, j); } ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; #else uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; v0 = ctx->hash[0]; v1 = ctx->hash[1]; v2 = ctx->hash[2]; v3 = ctx->hash[3]; v4 = ctx->hash[4]; v5 = ctx->hash[5]; v6 = ctx->hash[6]; v7 = ctx->hash[7]; one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); ctx->hash[0] += v0; ctx->hash[1] += v1; ctx->hash[2] += v2; ctx->hash[3] += v3; ctx->hash[4] += v4; ctx->hash[5] += v5; ctx->hash[6] += v6; ctx->hash[7] += v7; #endif } /* SHA256 hash data in an array of bytes into hash buffer */ /* and call the hash_compile function as required. */ void_ret sha256_hash(const unsigned char data[], unsigned int len, sha256_ctx ctx[1]) { uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK), space = SHA256_BLOCK_SIZE - pos; const unsigned char *sp = data; if((ctx->count[0] += len) < len) ++(ctx->count[1]); while(len >= space) /* tranfer whole blocks while possible */ { memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0; bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2) sha256_compile(ctx); } memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); } /* SHA256 Final padding and digest calculation */ static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) { uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK); /* put bytes in the buffer in an order in which references to */ /* 32-bit words will put bytes with lower addresses into the */ /* top of 32 bit words on BOTH big and little endian machines */ bsw_32(ctx->wbuf, (i + 3) >> 2) /* we now need to mask valid bytes and add the padding which is */ /* a single 1 bit and as many zero bits as necessary. Note that */ /* we can always add the first padding byte here because the */ /* buffer always has at least one empty slot */ ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); /* we need 9 or more empty positions, one for the padding byte */ /* (above) and eight for the length count. If there is not */ /* enough space pad and empty the buffer */ if(i > SHA256_BLOCK_SIZE - 9) { if(i < 60) ctx->wbuf[15] = 0; sha256_compile(ctx); i = 0; } else /* compute a word index for the empty buffer positions */ i = (i >> 2) + 1; while(i < 14) /* and zero pad all but last two positions */ ctx->wbuf[i++] = 0; /* the following 32-bit length fields are assembled in the */ /* wrong byte order on little endian machines but this is */ /* corrected later since they are only ever used as 32-bit */ /* word values. */ ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); ctx->wbuf[15] = ctx->count[0] << 3; sha256_compile(ctx); /* extract the hash value as bytes in case the hash buffer is */ /* mislaigned for 32-bit words */ for(i = 0; i < hlen; ++i) hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); } #endif #if defined(SHA_224) const uint_32t i224[8] = { 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul }; void_ret sha224_begin(sha224_ctx ctx[1]) { ctx->count[0] = ctx->count[1] = 0; memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); } void_ret sha224_end(unsigned char hval[], sha224_ctx ctx[1]) { sha_end1(hval, ctx, SHA224_DIGEST_SIZE); } void_ret sha224(unsigned char hval[], const unsigned char data[], unsigned int len) { sha224_ctx cx[1]; sha224_begin(cx); sha224_hash(data, len, cx); sha_end1(hval, cx, SHA224_DIGEST_SIZE); } #endif #if defined(SHA_256) const uint_32t i256[8] = { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }; void_ret sha256_begin(sha256_ctx ctx[1]) { ctx->count[0] = ctx->count[1] = 0; memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); } void_ret sha256_end(unsigned char hval[], sha256_ctx ctx[1]) { sha_end1(hval, ctx, SHA256_DIGEST_SIZE); } void_ret sha256(unsigned char hval[], const unsigned char data[], unsigned int len) { sha256_ctx cx[1]; sha256_begin(cx); sha256_hash(data, len, cx); sha_end1(hval, cx, SHA256_DIGEST_SIZE); } #endif #if defined(SHA_384) || defined(SHA_512) #define SHA512_MASK (SHA512_BLOCK_SIZE - 1) #define rotr64(x,n) (((x) >> n) | ((x) << (64 - n))) #if !defined(bswap_64) #define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32))) #endif #if defined(SWAP_BYTES) #define bsw_64(p,n) \ { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } #else #define bsw_64(p,n) #endif /* SHA512 mixing function definitions */ #ifdef s_0 # undef s_0 # undef s_1 # undef g_0 # undef g_1 # undef k_0 #endif #define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) #define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) #define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) #define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) #define k_0 k512 /* SHA384/SHA512 mixing data */ const uint_64t k512[80] = { li_64(428a2f98d728ae22), li_64(7137449123ef65cd), li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), li_64(3956c25bf348b538), li_64(59f111f1b605d019), li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), li_64(d807aa98a3030242), li_64(12835b0145706fbe), li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), li_64(9bdc06a725c71235), li_64(c19bf174cf692694), li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), li_64(983e5152ee66dfab), li_64(a831c66d2db43210), li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), li_64(06ca6351e003826f), li_64(142929670a0e6e70), li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), li_64(81c2c92e47edaee6), li_64(92722c851482353b), li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), li_64(d192e819d6ef5218), li_64(d69906245565a910), li_64(f40e35855771202a), li_64(106aa07032bbd1b8), li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), li_64(90befffa23631e28), li_64(a4506cebde82bde9), li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), li_64(ca273eceea26619c), li_64(d186b8c721c0c207), li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), li_64(113f9804bef90dae), li_64(1b710b35131c471b), li_64(28db77f523047d84), li_64(32caab7b40c72493), li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) }; /* Compile 128 bytes of hash data into SHA384/512 digest */ /* NOTE: this routine assumes that the byte order in the */ /* ctx->wbuf[] at this point is such that low address bytes */ /* in the ORIGINAL byte stream will go into the high end of */ /* words on BOTH big and little endian systems */ void_ret sha512_compile(sha512_ctx ctx[1]) { uint_64t v[8], *p = ctx->wbuf; uint_32t j; memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); for(j = 0; j < 80; j += 16) { v_cycle( 0, j); v_cycle( 1, j); v_cycle( 2, j); v_cycle( 3, j); v_cycle( 4, j); v_cycle( 5, j); v_cycle( 6, j); v_cycle( 7, j); v_cycle( 8, j); v_cycle( 9, j); v_cycle(10, j); v_cycle(11, j); v_cycle(12, j); v_cycle(13, j); v_cycle(14, j); v_cycle(15, j); } ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; } /* Compile 128 bytes of hash data into SHA256 digest value */ /* NOTE: this routine assumes that the byte order in the */ /* ctx->wbuf[] at this point is in such an order that low */ /* address bytes in the ORIGINAL byte stream placed in this */ /* buffer will now go to the high end of words on BOTH big */ /* and little endian systems */ void_ret sha512_hash(const unsigned char data[], unsigned int len, sha512_ctx ctx[1]) { uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK), space = SHA512_BLOCK_SIZE - pos; const unsigned char *sp = data; if((ctx->count[0] += len) < len) ++(ctx->count[1]); while(len >= space) /* tranfer whole blocks while possible */ { memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0; bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3); sha512_compile(ctx); } memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); } /* SHA384/512 Final padding and digest calculation */ static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) { uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK); /* put bytes in the buffer in an order in which references to */ /* 32-bit words will put bytes with lower addresses into the */ /* top of 32 bit words on BOTH big and little endian machines */ bsw_64(ctx->wbuf, (i + 7) >> 3); /* we now need to mask valid bytes and add the padding which is */ /* a single 1 bit and as many zero bits as necessary. Note that */ /* we can always add the first padding byte here because the */ /* buffer always has at least one empty slot */ ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7); ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7); /* we need 17 or more empty byte positions, one for the padding */ /* byte (above) and sixteen for the length count. If there is */ /* not enough space pad and empty the buffer */ if(i > SHA512_BLOCK_SIZE - 17) { if(i < 120) ctx->wbuf[15] = 0; sha512_compile(ctx); i = 0; } else i = (i >> 3) + 1; while(i < 14) ctx->wbuf[i++] = 0; /* the following 64-bit length fields are assembled in the */ /* wrong byte order on little endian machines but this is */ /* corrected later since they are only ever used as 64-bit */ /* word values. */ ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61); ctx->wbuf[15] = ctx->count[0] << 3; sha512_compile(ctx); /* extract the hash value as bytes in case the hash buffer is */ /* misaligned for 32-bit words */ for(i = 0; i < hlen; ++i) hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); } #endif #if defined(SHA_384) /* SHA384 initialisation data */ const uint_64t i384[80] = { li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), li_64(9159015a3070dd17), li_64(152fecd8f70e5939), li_64(67332667ffc00b31), li_64(8eb44a8768581511), li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) }; void_ret sha384_begin(sha384_ctx ctx[1]) { ctx->count[0] = ctx->count[1] = 0; memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); } void_ret sha384_end(unsigned char hval[], sha384_ctx ctx[1]) { sha_end2(hval, ctx, SHA384_DIGEST_SIZE); } void_ret sha384(unsigned char hval[], const unsigned char data[], unsigned int len) { sha384_ctx cx[1]; sha384_begin(cx); sha384_hash(data, len, cx); sha_end2(hval, cx, SHA384_DIGEST_SIZE); } #endif #if defined(SHA_512) /* SHA512 initialisation data */ const uint_64t i512[80] = { li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) }; void_ret sha512_begin(sha512_ctx ctx[1]) { ctx->count[0] = ctx->count[1] = 0; memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); } void_ret sha512_end(unsigned char hval[], sha512_ctx ctx[1]) { sha_end2(hval, ctx, SHA512_DIGEST_SIZE); } void_ret sha512(unsigned char hval[], const unsigned char data[], unsigned int len) { sha512_ctx cx[1]; sha512_begin(cx); sha512_hash(data, len, cx); sha_end2(hval, cx, SHA512_DIGEST_SIZE); } #endif #if defined(SHA_2) #define CTX_224(x) ((x)->uu->ctx256) #define CTX_256(x) ((x)->uu->ctx256) #define CTX_384(x) ((x)->uu->ctx512) #define CTX_512(x) ((x)->uu->ctx512) /* SHA2 initialisation */ int_ret sha2_begin(unsigned int len, sha2_ctx ctx[1]) { switch(len) { #if defined(SHA_224) case 224: case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; memcpy(CTX_256(ctx)->hash, i224, 32); ctx->sha2_len = 28; return EXIT_SUCCESS; #endif #if defined(SHA_256) case 256: case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; memcpy(CTX_256(ctx)->hash, i256, 32); ctx->sha2_len = 32; return EXIT_SUCCESS; #endif #if defined(SHA_384) case 384: case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; memcpy(CTX_384(ctx)->hash, i384, 64); ctx->sha2_len = 48; return EXIT_SUCCESS; #endif #if defined(SHA_512) case 512: case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; memcpy(CTX_512(ctx)->hash, i512, 64); ctx->sha2_len = 64; return EXIT_SUCCESS; #endif default: return EXIT_FAILURE; } } void_ret sha2_hash(const unsigned char data[], unsigned int len, sha2_ctx ctx[1]) { switch(ctx->sha2_len) { #if defined(SHA_224) case 28: sha224_hash(data, len, CTX_224(ctx)); return; #endif #if defined(SHA_256) case 32: sha256_hash(data, len, CTX_256(ctx)); return; #endif #if defined(SHA_384) case 48: sha384_hash(data, len, CTX_384(ctx)); return; #endif #if defined(SHA_512) case 64: sha512_hash(data, len, CTX_512(ctx)); return; #endif } } void_ret sha2_end(unsigned char hval[], sha2_ctx ctx[1]) { switch(ctx->sha2_len) { #if defined(SHA_224) case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; #endif #if defined(SHA_256) case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; #endif #if defined(SHA_384) case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; #endif #if defined(SHA_512) case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; #endif } } int_ret sha2(unsigned char hval[], unsigned int size, const unsigned char data[], unsigned int len) { sha2_ctx cx[1]; if(sha2_begin(size, cx) == EXIT_SUCCESS) { sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; } else return EXIT_FAILURE; } #endif #if defined(__cplusplus) } #endif #else /* CRYPT_GPL_ALGORITHM */ /* Basic operations */ #define SHR(x,n) (x >> n) /* SHR(x)^n, right shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTR(x,n,w) ((x >> n) | (x << (w - n))) /* ROTR(x)^n, circular right shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTL(x,n,w) ((x << n) | (x >> (w - n))) /* ROTL(x)^n, circular left shift n bits , x is w-bit word, 0 <= n <= w */ #define ROTR32(x,n) ROTR(x,n,32) /* 32 bits word */ #define ROTL32(x,n) ROTL(x,n,32) /* 32 bits word */ /* Basic functions */ #define Ch(x,y,z) ((x & y) ^ ((~x) & z)) #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z)) #define Parity(x,y,z) (x ^ y ^ z) #ifdef SHA1_SUPPORT /* SHA1 constants */ #define SHA1_MASK 0x0000000f static const UINT32 SHA1_K[4] = { 0x5a827999UL, 0x6ed9eba1UL, 0x8f1bbcdcUL, 0xca62c1d6UL }; static const UINT32 SHA1_DefaultHashValue[5] = { 0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL }; #endif /* SHA1_SUPPORT */ #ifdef SHA256_SUPPORT /* SHA256 functions */ #define Zsigma_256_0(x) (ROTR32(x,2) ^ ROTR32(x,13) ^ ROTR32(x,22)) #define Zsigma_256_1(x) (ROTR32(x,6) ^ ROTR32(x,11) ^ ROTR32(x,25)) #define Sigma_256_0(x) (ROTR32(x,7) ^ ROTR32(x,18) ^ SHR(x,3)) #define Sigma_256_1(x) (ROTR32(x,17) ^ ROTR32(x,19) ^ SHR(x,10)) /* SHA256 constants */ static const UINT32 SHA256_K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; static const UINT32 SHA256_DefaultHashValue[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; #endif /* SHA256_SUPPORT */ #ifdef SHA1_SUPPORT /* ======================================================================== Routine Description: Initial SHA1_CTX_STRUC Arguments: pSHA_CTX Pointer to SHA1_CTX_STRUC Return Value: None Note: None ======================================================================== */ VOID RT_SHA1_Init ( IN SHA1_CTX_STRUC *pSHA_CTX) { NdisMoveMemory(pSHA_CTX->HashValue, SHA1_DefaultHashValue, sizeof(SHA1_DefaultHashValue)); NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE); pSHA_CTX->MessageLen = 0; pSHA_CTX->BlockLen = 0; } /* End of RT_SHA1_Init */ /* ======================================================================== Routine Description: SHA1 computation for one block (512 bits) Arguments: pSHA_CTX Pointer to SHA1_CTX_STRUC Return Value: None Note: None ======================================================================== */ VOID RT_SHA1_Hash ( IN SHA1_CTX_STRUC *pSHA_CTX) { UINT32 W_i,t; UINT32 W[80]; UINT32 a,b,c,d,e,T,f_t = 0; /* Prepare the message schedule, {W_i}, 0 < t < 15 */ NdisMoveMemory(W, pSHA_CTX->Block, SHA1_BLOCK_SIZE); for (W_i = 0; W_i < 16; W_i++) { W[W_i] = cpu2be32(W[W_i]); /* Endian Swap */ } /* End of for */ for (W_i = 16; W_i < 80; W_i++) { W[W_i] = ROTL32((W[W_i - 3] ^ W[W_i - 8] ^ W[W_i - 14] ^ W[W_i - 16]),1); } /* End of for */ /* SHA256 hash computation */ /* Initialize the working variables */ a = pSHA_CTX->HashValue[0]; b = pSHA_CTX->HashValue[1]; c = pSHA_CTX->HashValue[2]; d = pSHA_CTX->HashValue[3]; e = pSHA_CTX->HashValue[4]; /* 80 rounds */ for (t = 0;t < 20;t++) { f_t = Ch(b,c,d); T = ROTL32(a,5) + f_t + e + SHA1_K[0] + W[t]; e = d; d = c; c = ROTL32(b,30); b = a; a = T; } /* End of for */ for (t = 20;t < 40;t++) { f_t = Parity(b,c,d); T = ROTL32(a,5) + f_t + e + SHA1_K[1] + W[t]; e = d; d = c; c = ROTL32(b,30); b = a; a = T; } /* End of for */ for (t = 40;t < 60;t++) { f_t = Maj(b,c,d); T = ROTL32(a,5) + f_t + e + SHA1_K[2] + W[t]; e = d; d = c; c = ROTL32(b,30); b = a; a = T; } /* End of for */ for (t = 60;t < 80;t++) { f_t = Parity(b,c,d); T = ROTL32(a,5) + f_t + e + SHA1_K[3] + W[t]; e = d; d = c; c = ROTL32(b,30); b = a; a = T; } /* End of for */ /* Compute the i^th intermediate hash value H^(i) */ pSHA_CTX->HashValue[0] += a; pSHA_CTX->HashValue[1] += b; pSHA_CTX->HashValue[2] += c; pSHA_CTX->HashValue[3] += d; pSHA_CTX->HashValue[4] += e; NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE); pSHA_CTX->BlockLen = 0; } /* End of RT_SHA1_Hash */ /* ======================================================================== Routine Description: The message is appended to block. If block size > 64 bytes, the SHA1_Hash will be called. Arguments: pSHA_CTX Pointer to SHA1_CTX_STRUC message Message context messageLen The length of message in bytes Return Value: None Note: None ======================================================================== */ VOID RT_SHA1_Append ( IN SHA1_CTX_STRUC *pSHA_CTX, IN const UINT8 Message[], IN UINT MessageLen) { UINT appendLen = 0; UINT diffLen = 0; while (appendLen != MessageLen) { diffLen = MessageLen - appendLen; if ((pSHA_CTX->BlockLen + diffLen) < SHA1_BLOCK_SIZE) { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, diffLen); pSHA_CTX->BlockLen += diffLen; appendLen += diffLen; } else { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen); appendLen += (SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen); pSHA_CTX->BlockLen = SHA1_BLOCK_SIZE; RT_SHA1_Hash(pSHA_CTX); } /* End of if */ } /* End of while */ pSHA_CTX->MessageLen += MessageLen; } /* End of RT_SHA1_Append */ /* ======================================================================== Routine Description: 1. Append bit 1 to end of the message 2. Append the length of message in rightmost 64 bits 3. Transform the Hash Value to digest message Arguments: pSHA_CTX Pointer to SHA1_CTX_STRUC Return Value: digestMessage Digest message Note: None ======================================================================== */ VOID RT_SHA1_End ( IN SHA1_CTX_STRUC *pSHA_CTX, OUT UINT8 DigestMessage[]) { UINT index; UINT64 message_length_bits; /* Append bit 1 to end of the message */ NdisFillMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, 1, 0x80); /* 55 = 64 - 8 - 1: append 1 bit(1 byte) and message length (8 bytes) */ if (pSHA_CTX->BlockLen > 55) RT_SHA1_Hash(pSHA_CTX); /* End of if */ /* Append the length of message in rightmost 64 bits */ message_length_bits = pSHA_CTX->MessageLen*8; message_length_bits = cpu2be64(message_length_bits); NdisMoveMemory(&pSHA_CTX->Block[56], &message_length_bits, 8); RT_SHA1_Hash(pSHA_CTX); /* Return message digest, transform the UINT32 hash value to bytes */ for (index = 0; index < 5;index++) pSHA_CTX->HashValue[index] = cpu2be32(pSHA_CTX->HashValue[index]); /* End of for */ NdisMoveMemory(DigestMessage, pSHA_CTX->HashValue, SHA1_DIGEST_SIZE); } /* End of RT_SHA1_End */ /* ======================================================================== Routine Description: SHA1 algorithm Arguments: message Message context messageLen The length of message in bytes Return Value: digestMessage Digest message Note: None ======================================================================== */ VOID RT_SHA1 ( IN const UINT8 Message[], IN UINT MessageLen, OUT UINT8 DigestMessage[]) { SHA1_CTX_STRUC sha_ctx; NdisZeroMemory(&sha_ctx, sizeof(SHA1_CTX_STRUC)); RT_SHA1_Init(&sha_ctx); RT_SHA1_Append(&sha_ctx, Message, MessageLen); RT_SHA1_End(&sha_ctx, DigestMessage); } /* End of RT_SHA1 */ #endif /* SHA1_SUPPORT */ #ifdef SHA256_SUPPORT /* ======================================================================== Routine Description: Initial SHA256_CTX_STRUC Arguments: pSHA_CTX Pointer to SHA256_CTX_STRUC Return Value: None Note: None ======================================================================== */ VOID RT_SHA256_Init ( IN SHA256_CTX_STRUC *pSHA_CTX) { NdisMoveMemory(pSHA_CTX->HashValue, SHA256_DefaultHashValue, sizeof(SHA256_DefaultHashValue)); NdisZeroMemory(pSHA_CTX->Block, SHA256_BLOCK_SIZE); pSHA_CTX->MessageLen = 0; pSHA_CTX->BlockLen = 0; } /* End of RT_SHA256_Init */ /* ======================================================================== Routine Description: SHA256 computation for one block (512 bits) Arguments: pSHA_CTX Pointer to SHA256_CTX_STRUC Return Value: None Note: None ======================================================================== */ VOID RT_SHA256_Hash ( IN SHA256_CTX_STRUC *pSHA_CTX) { UINT32 W_i,t; UINT32 W[64]; UINT32 a,b,c,d,e,f,g,h,T1,T2; /* Prepare the message schedule, {W_i}, 0 < t < 15 */ NdisMoveMemory(W, pSHA_CTX->Block, SHA256_BLOCK_SIZE); for (W_i = 0; W_i < 16; W_i++) W[W_i] = cpu2be32(W[W_i]); /* Endian Swap */ /* End of for */ /* SHA256 hash computation */ /* Initialize the working variables */ a = pSHA_CTX->HashValue[0]; b = pSHA_CTX->HashValue[1]; c = pSHA_CTX->HashValue[2]; d = pSHA_CTX->HashValue[3]; e = pSHA_CTX->HashValue[4]; f = pSHA_CTX->HashValue[5]; g = pSHA_CTX->HashValue[6]; h = pSHA_CTX->HashValue[7]; /* 64 rounds */ for (t = 0;t < 64;t++) { if (t > 15) /* Prepare the message schedule, {W_i}, 16 < t < 63 */ W[t] = Sigma_256_1(W[t-2]) + W[t-7] + Sigma_256_0(W[t-15]) + W[t-16]; /* End of if */ T1 = h + Zsigma_256_1(e) + Ch(e,f,g) + SHA256_K[t] + W[t]; T2 = Zsigma_256_0(a) + Maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } /* End of for */ /* Compute the i^th intermediate hash value H^(i) */ pSHA_CTX->HashValue[0] += a; pSHA_CTX->HashValue[1] += b; pSHA_CTX->HashValue[2] += c; pSHA_CTX->HashValue[3] += d; pSHA_CTX->HashValue[4] += e; pSHA_CTX->HashValue[5] += f; pSHA_CTX->HashValue[6] += g; pSHA_CTX->HashValue[7] += h; NdisZeroMemory(pSHA_CTX->Block, SHA256_BLOCK_SIZE); pSHA_CTX->BlockLen = 0; } /* End of RT_SHA256_Hash */ /* ======================================================================== Routine Description: The message is appended to block. If block size > 64 bytes, the SHA256_Hash will be called. Arguments: pSHA_CTX Pointer to SHA256_CTX_STRUC message Message context messageLen The length of message in bytes Return Value: None Note: None ======================================================================== */ VOID RT_SHA256_Append ( IN SHA256_CTX_STRUC *pSHA_CTX, IN const UINT8 Message[], IN UINT MessageLen) { UINT appendLen = 0; UINT diffLen = 0; while (appendLen != MessageLen) { diffLen = MessageLen - appendLen; if ((pSHA_CTX->BlockLen + diffLen) < SHA256_BLOCK_SIZE) { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, diffLen); pSHA_CTX->BlockLen += diffLen; appendLen += diffLen; } else { NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, Message + appendLen, SHA256_BLOCK_SIZE - pSHA_CTX->BlockLen); appendLen += (SHA256_BLOCK_SIZE - pSHA_CTX->BlockLen); pSHA_CTX->BlockLen = SHA256_BLOCK_SIZE; RT_SHA256_Hash(pSHA_CTX); } /* End of if */ } /* End of while */ pSHA_CTX->MessageLen += MessageLen; } /* End of RT_SHA256_Append */ /* ======================================================================== Routine Description: 1. Append bit 1 to end of the message 2. Append the length of message in rightmost 64 bits 3. Transform the Hash Value to digest message Arguments: pSHA_CTX Pointer to SHA256_CTX_STRUC Return Value: digestMessage Digest message Note: None ======================================================================== */ VOID RT_SHA256_End ( IN SHA256_CTX_STRUC *pSHA_CTX, OUT UINT8 DigestMessage[]) { UINT index; UINT64 message_length_bits; /* Append bit 1 to end of the message */ NdisFillMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, 1, 0x80); /* 55 = 64 - 8 - 1: append 1 bit(1 byte) and message length (8 bytes) */ if (pSHA_CTX->BlockLen > 55) RT_SHA256_Hash(pSHA_CTX); /* End of if */ /* Append the length of message in rightmost 64 bits */ message_length_bits = pSHA_CTX->MessageLen*8; message_length_bits = cpu2be64(message_length_bits); NdisMoveMemory(&pSHA_CTX->Block[56], &message_length_bits, 8); RT_SHA256_Hash(pSHA_CTX); /* Return message digest, transform the UINT32 hash value to bytes */ for (index = 0; index < 8;index++) pSHA_CTX->HashValue[index] = cpu2be32(pSHA_CTX->HashValue[index]); /* End of for */ NdisMoveMemory(DigestMessage, pSHA_CTX->HashValue, SHA256_DIGEST_SIZE); } /* End of RT_SHA256_End */ /* ======================================================================== Routine Description: SHA256 algorithm Arguments: message Message context messageLen The length of message in bytes Return Value: digestMessage Digest message Note: None ======================================================================== */ VOID RT_SHA256 ( IN const UINT8 Message[], IN UINT MessageLen, OUT UINT8 DigestMessage[]) { SHA256_CTX_STRUC sha_ctx; NdisZeroMemory(&sha_ctx, sizeof(SHA256_CTX_STRUC)); RT_SHA256_Init(&sha_ctx); RT_SHA256_Append(&sha_ctx, Message, MessageLen); RT_SHA256_End(&sha_ctx, DigestMessage); } /* End of RT_SHA256 */ #endif /* SHA256_SUPPORT */ #endif /* CRYPT_GPL_ALGORITHM */ /* End of crypt_sha2.c */