Files
Linux_Drivers/osdrv/extdrv/wireless/mediatek/mt7603/common/ee_efuse.c
forum_service 213c880673 add driver of tp、wiegand-gpio and wireless
Change-Id: Ie3c11d9d85cf1a05042f5690ac711856fe8b1ad7
2023-12-22 09:56:05 +08:00

2035 lines
50 KiB
C

/*
***************************************************************************
* Ralink Tech Inc.
* 4F, No. 2 Technology 5th Rd.
* Science-based Industrial Park
* Hsin-chu, Taiwan, R.O.C.
*
* (c) Copyright 2002-2004, Ralink Technology, Inc.
*
* All rights reserved. Ralink's source code is an unpublished work and the
* use of a copyright notice does not imply otherwise. This source code
* contains confidential trade secret material of Ralink Tech. Any attemp
* or participation in deciphering, decoding, reverse engineering or in any
* way altering the source code is stricitly prohibited, unless the prior
* written consent of Ralink Technology, Inc. is obtained.
***************************************************************************
Module Name:
ee_efuse.c
Revision History:
Who When What
-------- ---------- ----------------------------------------------
*/
#ifdef RTMP_EFUSE_SUPPORT
#include "rt_config.h"
static VOID eFuseWritePhysical(
IN PRTMP_ADAPTER pAd,
PUSHORT lpInBuffer,
ULONG nInBufferSize,
PUCHAR lpOutBuffer,
ULONG nOutBufferSize);
static VOID EFUSE_IO_READ32(PRTMP_ADAPTER pAd, UINT32 reg, UINT32 *value)
{
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
{
#ifdef RTMP_MAC_PCI
UINT32 RestoreValue;
RTMP_IO_READ32(pAd, MCU_PCIE_REMAP_2, &RestoreValue);
RTMP_IO_WRITE32(pAd, MCU_PCIE_REMAP_2, MT_EEF_BASE - 0x70000);
RTMP_IO_READ32(pAd, 0x80000 + (reg - MT_EEF_BASE) + 0x70000, value);
RTMP_IO_WRITE32(pAd, MCU_PCIE_REMAP_2, RestoreValue);
#endif
#if defined(RTMP_MAC_USB) || defined(RTMP_MAC_SDIO)
RTMP_MCU_IO_READ32(pAd, reg, value);
#endif
}
else
#endif /* MT_MAC */
RTMP_IO_READ32(pAd, reg, value);
}
static VOID EFUSE_IO_WRITE32(PRTMP_ADAPTER pAd, UINT32 reg, UINT32 value)
{
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
{
#ifdef RTMP_MAC_PCI
UINT32 RestoreValue;
RTMP_IO_READ32(pAd, MCU_PCIE_REMAP_2, &RestoreValue);
RTMP_IO_WRITE32(pAd, MCU_PCIE_REMAP_2, MT_EEF_BASE - 0x70000);
RTMP_IO_WRITE32(pAd, 0x80000 + (reg - MT_EEF_BASE) + 0x70000, value);
RTMP_IO_WRITE32(pAd, MCU_PCIE_REMAP_2, RestoreValue);
#endif
#if defined(RTMP_MAC_USB) || defined(RTMP_MAC_SDIO)
RTMP_MCU_IO_WRITE32(pAd, reg, value);
#endif
}
else
#endif /* MT_MAC */
RTMP_IO_WRITE32(pAd, reg, value);
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
UCHAR eFuseReadRegisters(PRTMP_ADAPTER pAd, UINT16 Offset, UINT16 Length, UINT16* pData)
{
EFUSE_CTRL_STRUC eFuseCtrlStruc;
INT32 i;
UINT32 efuseDataOffset;
UINT32 data=0;
UINT32 efuse_ctrl_reg = EFUSE_CTRL;
int ret;
RTMP_SEM_EVENT_WAIT(&(pAd->e2p_read_lock), ret);
if(ret != 0)
DBGPRINT(RT_DEBUG_ERROR, ("%s:(%d) RTMP_SEM_EVENT_WAIT failed!\n",__FUNCTION__,ret));
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuse_ctrl_reg = EFUSE_CTRL_3290;
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
efuse_ctrl_reg = MT_EFUSE_CTRL;
#endif /* MT_MAC */
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
/* Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
/*Use the eeprom logical address and covert to address to block number*/
eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
/* Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 0.*/
eFuseCtrlStruc.field.EFSROM_MODE = 0;
/* Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.*/
eFuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
EFUSE_IO_WRITE32(pAd, efuse_ctrl_reg, data);
/* Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.*/
i = 0;
while(i < 500)
{
if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST))
{
RTMP_SEM_EVENT_UP(&(pAd->e2p_read_lock));
return 0x3f;
}
/*rtmp.HwMemoryReadDword(EFUSE_CTRL, (DWORD *) &eFuseCtrlStruc, 4);*/
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
{
RtmpusecDelay(2);
break;
}
RtmpusecDelay(2);
i++;
}
/*if EFSROM_AOUT is not found in physical address, write 0xffff*/
if (eFuseCtrlStruc.field.EFSROM_AOUT == 0x3f)
{
for(i = 0; i < Length / 2; i++) {
*(pData +2 * i) = 0xffff;
}
RTMP_SEM_EVENT_UP(&(pAd->e2p_read_lock));
return 0x3f;
} else {
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT) {
if (!eFuseCtrlStruc.field.EFSROM_DOUT_VLD) {
for(i = 0; i < Length / 2; i++){
*(pData +2 * i) = 0xffff;
}
RTMP_SEM_EVENT_UP(&(pAd->e2p_read_lock));
return 0x3f;
}
}
#endif /* MT_MAC */
/*Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x590-0x59C)*/
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuseDataOffset = EFUSE_DATA0_3290 + (Offset & 0xC);
else
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
efuseDataOffset = MT_EFUSE_RDATA0 + (Offset & 0xC);
else
#endif /* MT_MAC */
efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC);
/*data hold 4 bytes data.*/
/*In EFUSE_IO_READ32 will automatically execute 32-bytes swapping*/
EFUSE_IO_READ32(pAd, efuseDataOffset, &data);
/*Decide the upper 2 bytes or the bottom 2 bytes.*/
/* Little-endian S | S Big-endian*/
/* addr 3 2 1 0 | 0 1 2 3*/
/* Ori-V D C B A | A B C D*/
/*After swapping*/
/* D C B A | D C B A*/
/*Return 2-bytes*/
/*The return byte statrs from S. Therefore, the little-endian will return BA, the Big-endian will return DC.*/
/*For returning the bottom 2 bytes, the Big-endian should shift right 2-bytes.*/
#ifdef RT_BIG_ENDIAN
data = data << (8*((Offset & 0x3)^0x2));
#else
data = data >> (8*(Offset & 0x3));
#endif /* RT_BIG_ENDIAN */
NdisMoveMemory(pData, &data, Length);
}
RTMP_SEM_EVENT_UP(&(pAd->e2p_read_lock));
return eFuseCtrlStruc.field.EFSROM_AOUT;
}
VOID EfusePhysicalReadRegisters(PRTMP_ADAPTER pAd, UINT16 Offset,
UINT16 Length, UINT16* pData)
{
EFUSE_CTRL_STRUC EfuseCtrlStruc;
INT32 Index;
UINT32 EfuseDataOffset;
UINT32 Data;
UINT32 EfuseCtrlReg = EFUSE_CTRL;
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
EfuseCtrlReg = EFUSE_CTRL_3290;
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
EfuseCtrlReg = MT_EFUSE_CTRL;
#endif /* MT_MAC */
EFUSE_IO_READ32(pAd, EfuseCtrlReg, &EfuseCtrlStruc.word);
/*Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
EfuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
/*Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.*/
/*Read in physical view*/
EfuseCtrlStruc.field.EFSROM_MODE = 1;
/*Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.*/
EfuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&Data, &EfuseCtrlStruc, 4);
EFUSE_IO_WRITE32(pAd, EfuseCtrlReg, Data);
/*Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.*/
Index = 0;
while (Index < 500)
{
if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST))
return;
EFUSE_IO_READ32(pAd, EfuseCtrlReg, &EfuseCtrlStruc.word);
if(EfuseCtrlStruc.field.EFSROM_KICK == 0)
{
RtmpusecDelay(2);
break;
}
RtmpusecDelay(2);
Index++;
}
DBGPRINT(RT_DEBUG_INFO, ("EfuseCtrlStruc.field.EFSROM_AOUT = %x\n", EfuseCtrlStruc.field.EFSROM_AOUT));
DBGPRINT(RT_DEBUG_INFO, ("EfuseCtrlStruc.field.EFSROM_DOUT_VLD = %x\n", EfuseCtrlStruc.field.EFSROM_DOUT_VLD));
/*if EFSROM_AOUT is not found in physical address, write 0xffff*/
if (EfuseCtrlStruc.field.EFSROM_AOUT == 0x3f)
{
for(Index = 0; Index < Length / 2; Index++)
{
*(pData + 2 * Index) = 0xffff;
}
DBGPRINT(RT_DEBUG_ERROR, ("EfuseCtrlStruc.field.EFSROM_AOUT = %x\n", EfuseCtrlStruc.field.EFSROM_AOUT));
return;
}
else
{
if (pAd->chipCap.hif_type == HIF_MT)
{
if (!EfuseCtrlStruc.field.EFSROM_DOUT_VLD) {
for(Index = 0; Index < Length / 2; Index++)
{
*(pData + 2 * Index) = 0xffff;
}
DBGPRINT(RT_DEBUG_OFF, ("EfuseCtrlStruc.field.EFSROM_DOUT_VLD = %x\n", EfuseCtrlStruc.field.EFSROM_DOUT_VLD));
return;
}
}
}
/*Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)*/
/*Because the size of each EFUSE_DATA is 4 Bytes, the size of address of each is 2 bits.*/
/*The previous 2 bits is the EFUSE_DATA number, the last 2 bits is used to decide which bytes*/
/*Decide which EFUSE_DATA to read*/
/*590:F E D C */
/*594:B A 9 8 */
/*598:7 6 5 4*/
/*59C:3 2 1 0*/
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
EfuseDataOffset = EFUSE_DATA0_3290 + (Offset & 0xC) ;
else
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
EfuseDataOffset = MT_EFUSE_RDATA0 + (Offset & 0xC);
else
#endif /* MT_MAC */
EfuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ;
EFUSE_IO_READ32(pAd, EfuseDataOffset , &Data);
#ifdef RT_BIG_ENDIAN
Data = Data << (8 *((Offset & 0x3)^0x2));
#else
Data = Data >> (8 * (Offset & 0x3));
#endif /* RT_BIG_ENDIAN */
NdisMoveMemory(pData, &Data, Length);
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
VOID eFuseReadPhysical(
IN PRTMP_ADAPTER pAd,
IN PUSHORT lpInBuffer,
IN ULONG nInBufferSize,
OUT PUSHORT lpOutBuffer,
IN ULONG nOutBufferSize
)
{
USHORT* pInBuf = (USHORT*)lpInBuffer;
USHORT* pOutBuf = (USHORT*)lpOutBuffer;
USHORT Offset = pInBuf[0]; /*addr*/
USHORT Length = pInBuf[1]; /*length*/
INT32 i;
for(i = 0; i < Length; i+=2)
{
EfusePhysicalReadRegisters(pAd, (UINT16)(Offset + i), 2, &pOutBuf[i/2]);
}
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
NTSTATUS eFuseRead(
IN PRTMP_ADAPTER pAd,
IN USHORT Offset,
OUT PUSHORT pData,
IN USHORT Length)
{
NTSTATUS Status = STATUS_SUCCESS;
int i;
for(i = 0; i < Length; i+=2)
{
eFuseReadRegisters(pAd, (UINT16)(Offset+i), 2, &pData[i/2]);
}
return Status;
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
static VOID eFusePhysicalWriteRegisters(
IN PRTMP_ADAPTER pAd,
IN USHORT Offset,
IN USHORT Length,
OUT USHORT* pData)
{
EFUSE_CTRL_STRUC eFuseCtrlStruc;
int i;
UINT32 efuseDataOffset;
UINT32 efuse_rdata = EFUSE_DATA3, efuse_wdata = EFUSE_DATA3;
UINT32 data, eFuseDataBuffer[4];
UINT32 efuse_ctrl_reg = EFUSE_CTRL;
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd)) {
efuse_ctrl_reg = EFUSE_CTRL_3290;
efuse_rdata = EFUSE_DATA0_3290;
efuse_wdata = EFUSE_DATA0_3290;
}
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT) {
efuse_ctrl_reg = MT_EFUSE_CTRL;
efuse_rdata = MT_EFUSE_RDATA0;
efuse_wdata = MT_EFUSE_WDATA0;
}
#endif /* MT_MAC */
/*Step0. Write 16-byte of data to EFUSE_DATA0-3 (0x590-0x59C), where EFUSE_DATA0 is the LSB DW, EFUSE_DATA3 is the MSB DW.*/
/*read current values of 16-byte block */
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
/*Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
/*Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.*/
eFuseCtrlStruc.field.EFSROM_MODE = 1;
/*Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.*/
eFuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
EFUSE_IO_WRITE32(pAd, efuse_ctrl_reg, data);
/*Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.*/
i = 0;
while(i < 500)
{
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
{
RtmpusecDelay(2);
break;
}
RtmpusecDelay(2);
i++;
}
/*Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)*/
efuseDataOffset = efuse_rdata;
for (i = 0; i < 4; i++)
{
EFUSE_IO_READ32(pAd, efuseDataOffset, (PUINT32) &eFuseDataBuffer[i]);
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuseDataOffset += 4;
else
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
efuseDataOffset += 4;
else
#endif /* MT_MAC */
efuseDataOffset -= 4;
}
/*Update the value, the offset is multiple of 2, length is 2*/
efuseDataOffset = (Offset & 0xc) >> 2;
data = pData[0] & 0xffff;
/*The offset should be 0x***10 or 0x***00*/
if((Offset % 4) != 0)
{
eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff) | (data << 16);
}
else
{
eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff0000) | data;
}
efuseDataOffset = efuse_wdata;
for(i = 0; i < 4; i++)
{
EFUSE_IO_WRITE32(pAd, efuseDataOffset, eFuseDataBuffer[i]);
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuseDataOffset += 4;
else
#endif /* defined(RT3290) || defined(RT65xx) || defined(MT7601) */
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
efuseDataOffset += 4;
else
#endif /* MT_MAC */
efuseDataOffset -= 4;
}
/*Step1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
// TODO: shiang, for below line, windows driver didn't have this read, why we have ??
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
/*Step2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.*/
eFuseCtrlStruc.field.EFSROM_MODE = 3;
/*Step3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.*/
eFuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
EFUSE_IO_WRITE32(pAd, efuse_ctrl_reg, data);
/*Step4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It's done.*/
i = 0;
while (i < 500)
{
EFUSE_IO_READ32(pAd, efuse_ctrl_reg, &eFuseCtrlStruc.word);
if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
{
RtmpusecDelay(2);
break;
}
RtmpusecDelay(2);
i++;
}
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
static NTSTATUS eFuseWriteRegisters(
IN PRTMP_ADAPTER pAd,
IN USHORT Offset,
IN USHORT Length,
IN USHORT* pData)
{
USHORT i,Loop=0, StartBlock=0, EndBlock=0;
USHORT eFuseData;
USHORT LogicalAddress, BlkNum = 0xffff;
UCHAR EFSROM_AOUT;
USHORT addr,tmpaddr, InBuf[3], tmpOffset;
USHORT buffer[8];
BOOLEAN bWriteSuccess = TRUE;
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters Offset=%x, pData=%x\n", Offset, *pData));
/*set start block and end block number, start from tail of mapping table*/
if( (pAd->chipCap.EFUSE_USAGE_MAP_END % 2) != 0)
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_END-1;
}
else
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_END;
}
if( (pAd->chipCap.EFUSE_USAGE_MAP_START % 2) != 0)
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_START-1;
}
else
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_START;
}
/*Step 0. find the entry in the mapping table*/
/*The address of EEPROM is 2-bytes alignment.*/
/*The last bit is used for alignment, so it must be 0.*/
tmpOffset = Offset & 0xfffe;
EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
if (EFSROM_AOUT == 0x3f)
{ /*find available logical address pointer */
/*the logical address does not exist, find an empty one*/
/*from the first address of block 45=16*45=0x2d0 to the last address of block 47*/
/*==>48*16-3(reserved)=2FC*/
for (i=StartBlock; i >= EndBlock; i-=2)
{
/*Retrive the logical block nubmer form each logical address pointer*/
/*It will access two logical address pointer each time.*/
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
/*To avoid the odd byte problem, ex. We read the 21|20 bytes and if 21 is the */
/* end byte. Then, the EFUSE_USAGE_MAP_END which is 21 is not equal to*/
/* i which is 20. Therefore, this 21th byte could be used.*/
/*Otherwise, if 20 is the stop byte, i which is 20 is equal EFUSE_USAGE_MAP_END.*/
/* It means the 21th byte could not be used.*/
if(( (LogicalAddress >> 8) & 0xff) == 0)
{/*Not used logical address pointer*/
if (i != pAd->chipCap.EFUSE_USAGE_MAP_END)
{
BlkNum = i-pAd->chipCap.EFUSE_USAGE_MAP_START+1;
break;
}
}
if( (LogicalAddress & 0xff) == 0)
{/*Not used logical address pointer*/
if (i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
BlkNum = i-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
}
}
else
{
BlkNum = EFSROM_AOUT;
}
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
if(BlkNum == 0xffff)
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
return FALSE;
}
/*Step 1. Save data of this block which is pointed by the avaible logical address pointer*/
/* read and save the original block data*/
for(i =0; i<8; i++)
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+2*i;
InBuf[1] = 2;
InBuf[2] = 0x0;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
buffer[i] = InBuf[2];
}
/*Step 2. Update the data in buffer, and write the data to Efuse*/
buffer[ (Offset >> 1) % 8] = pData[0];
do
{ Loop++;
/*Step 3. Write the data to Efuse*/
if(!bWriteSuccess)
{
for(i =0; i<8; i++)
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+2*i;
InBuf[1] = 2;
InBuf[2] = buffer[i];
eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
}
}
else
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+(Offset % 16);
InBuf[1] = 2;
InBuf[2] = pData[0];
eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
}
/*Step 4. Write mapping table*/
addr = pAd->chipCap.EFUSE_USAGE_MAP_START+BlkNum;
tmpaddr = addr;
if(addr % 2 != 0)
addr = addr -1;
InBuf[0] = addr;
InBuf[1] = 2;
/*convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry*/
tmpOffset = Offset;
tmpOffset >>= 4;
tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
/* write the logical address*/
if(tmpaddr%2 != 0)
InBuf[2] = tmpOffset<<8;
else
InBuf[2] = tmpOffset;
eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
/*Step 5. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted*/
bWriteSuccess = TRUE;
for(i =0; i<8; i++)
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+2*i;
InBuf[1] = 2;
InBuf[2] = 0x0;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
if(buffer[i] != InBuf[2])
{
bWriteSuccess = FALSE;
break;
}
}
/*Step 6. invlidate mapping entry and find a free mapping entry if not succeed*/
if (!bWriteSuccess)
{
DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess BlkNum = %d\n", BlkNum));
#if 0
if(BlkNum >= (pAd->chipCap.EFUSE_USAGE_MAP_SIZE-1))
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
return FALSE;
}
#endif
/* the offset of current mapping entry*/
addr = pAd->chipCap.EFUSE_USAGE_MAP_START+BlkNum;
/*find a new mapping entry*/
BlkNum = 0xffff;
for (i=StartBlock; i >= EndBlock; i-=2)
{
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
if(( (LogicalAddress >> 8) & 0xff) == 0)
{
if(i != pAd->chipCap.EFUSE_USAGE_MAP_END)
{
BlkNum = i+1-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
if( (LogicalAddress & 0xff) == 0)
{
if(i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
BlkNum = i-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
}
DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess and allocate new BlkNum = %d\n", BlkNum));
if(BlkNum == 0xffff)
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
return FALSE;
}
/*invalidate the original mapping entry if new entry is not found*/
tmpaddr = addr;
if(addr % 2 != 0)
addr = addr -1;
InBuf[0] = addr;
InBuf[1] = 2;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
/* write the logical address*/
if(tmpaddr%2 != 0)
{
/* Invalidate the high byte*/
for (i=8; i<15; i++)
{
if( ( (InBuf[2] >> i) & 0x01) == 0)
{
InBuf[2] |= (0x1 <<i);
break;
}
}
}
else
{
/* invalidate the low byte*/
for (i=0; i<8; i++)
{
if( ( (InBuf[2] >> i) & 0x01) == 0)
{
InBuf[2] |= (0x1 <<i);
break;
}
}
}
eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
}
}
while (!bWriteSuccess&&Loop<2);
if(!bWriteSuccess)
DBGPRINT(RT_DEBUG_ERROR,("Efsue Write Failed!!\n"));
return TRUE;
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
static VOID eFuseWritePhysical(
IN PRTMP_ADAPTER pAd,
PUSHORT lpInBuffer,
ULONG nInBufferSize,
PUCHAR lpOutBuffer,
ULONG nOutBufferSize
)
{
USHORT* pInBuf = (USHORT*)lpInBuffer;
int i;
/*USHORT* pOutBuf = (USHORT*)ioBuffer;*/
USHORT Offset = pInBuf[0]; /* addr*/
USHORT Length = pInBuf[1]; /* length*/
USHORT* pValueX = &pInBuf[2]; /* value ... */
#ifdef MT76x2
UINT32 MacReg0x14c = 0, MacReg0x24 = 0;
#endif /* MT76x2 */
DBGPRINT(RT_DEBUG_INFO, ("eFuseWritePhysical Offset=0x%x, length=%d\n", Offset, Length));
#if 0/*def RT35xx*/
if ((Length == 16) && ((Offset % 16) == 0))
{
/* Efuse write by block case*/
/* TODO:Warning-cast pValueX from PUSHORT to PUINT32 ! */
DBGPRINT(RT_DEBUG_TRACE, ("eFusePhysicalWriteRegistersByBlock Offset=0x%x, length=%d\n", Offset, Length));
eFusePhysicalWriteRegistersByBlock(pAd, Offset, Length, (PUINT32)pValueX);
}
else
#endif /* RT35xx */
{
#ifdef MT76x2
if ( IS_MT76x2(pAd) )
{
UINT32 MacValue;
RTMP_IO_READ32(pAd, CLK_ENABLE, &MacValue);
MacReg0x14c = MacValue;
MacValue |= 0x2000000;
RTMP_IO_WRITE32(pAd, CLK_ENABLE, MacValue);
RTMP_IO_READ32(pAd, 0x24, &MacValue);
MacReg0x24 = MacValue;
MacValue |= 0xC000;
MacValue &= ~0x3F00;
MacValue |= 0x800;
RTMP_IO_WRITE32(pAd, 0x24, MacValue);
}
#endif /* MT76x2 */
/* Little-endian S | S Big-endian*/
/* addr 3 2 1 0 | 0 1 2 3*/
/* Ori-V D C B A | A B C D*/
/* After swapping*/
/* D C B A | D C B A*/
/* Both the little and big-endian use the same sequence to write data.*/
/* Therefore, we only need swap data when read the data.*/
for (i=0; i<Length; i+=2)
{
eFusePhysicalWriteRegisters(pAd, (USHORT)(Offset+i), 2, &pValueX[i/2]);
}
#ifdef MT76x2
if ( IS_MT76x2(pAd) )
{
RTMP_IO_WRITE32(pAd, CLK_ENABLE, MacReg0x14c);
RTMP_IO_WRITE32(pAd, 0x24, MacReg0x24);
}
#endif /* MT76x2 */
}
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
NTSTATUS eFuseWrite(
IN PRTMP_ADAPTER pAd,
IN USHORT Offset,
IN PUSHORT pData,
IN USHORT length)
{
int i;
USHORT* pValueX = (PUSHORT) pData; /*value ... */
PUSHORT OddWriteByteBuf;
/* OddWriteByteBuf=(PUSHORT)kmalloc(sizeof(USHORT)*2, MEM_ALLOC_FLAG);*/
os_alloc_mem(NULL, (UCHAR **)&OddWriteByteBuf, sizeof(USHORT)*2);
/* The input value=3070 will be stored as following*/
/* Little-endian S | S Big-endian*/
/* addr 1 0 | 0 1 */
/* Ori-V 30 70 | 30 70 */
/* After swapping*/
/* 30 70 | 70 30*/
/* Casting*/
/* 3070 | 7030 (x)*/
/* The swapping should be removed for big-endian*/
if (OddWriteByteBuf == NULL)
return FALSE;
if((Offset%2)!=0)
{
length+=2;
Offset-=1;
eFuseRead(pAd,Offset,OddWriteByteBuf,2);
eFuseRead(pAd,Offset+2,(OddWriteByteBuf+1),2);
*OddWriteByteBuf&=0x00ff;
*OddWriteByteBuf|=((*pData)&0xff)<<8;
*(OddWriteByteBuf+1)&=0xff00;
*(OddWriteByteBuf+1)|=(*pData&0xff00)>>8;
pValueX=OddWriteByteBuf;
}
for(i=0; i<length; i+=2)
{
eFuseWriteRegisters(pAd, (USHORT)(Offset+i), 2, &pValueX[i/2]);
}
os_free_mem(NULL, OddWriteByteBuf);
return TRUE;
}
/*
========================================================================
Routine Description:
Arguments:
Return Value:
Note:
========================================================================
*/
INT set_eFuseGetFreeBlockCount_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
UINT free_num = 0;
if (pAd->bUseEfuse == FALSE)
return FALSE;
eFuseGetFreeBlockCount(pAd, &free_num);
DBGPRINT(RT_DEBUG_OFF, ("efuseFreeNumber = %d\n", free_num));
return TRUE;
}
INT set_eFusedump_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
USHORT InBuf[3];
INT i = 0;
if (pAd->bUseEfuse == FALSE)
return FALSE;
for (i = 0; i < pAd->chipCap.EFUSE_USAGE_MAP_END/2; i++)
{
InBuf[0] = (USHORT)(2*i);
InBuf[1] = 2;
InBuf[2] = 0x0;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
if (i%4 == 0)
DBGPRINT(RT_DEBUG_OFF, ("\nBlock %x:", i/8));
DBGPRINT(RT_DEBUG_OFF, ("%04x ", InBuf[2]));
}
return TRUE;
}
#if 0
INT set_eFuseLoadFromBin_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
RTMP_STRING *src;
RTMP_OS_FD srcf;
RTMP_OS_FS_INFO osfsInfo;
INT retval, memSize;
RTMP_STRING *buffer, *memPtr;
INT TotalByte= 0,ReadedByte=0,CompareBuf=1;
USHORT *PDATA;
USHORT DATA;
memSize = 128 + MAX_EEPROM_BIN_FILE_SIZE + sizeof(USHORT) * 8;
os_alloc_mem(NULL, (UCHAR **)&memPtr, memSize);
if (memPtr == NULL)
return FALSE;
NdisZeroMemory(memPtr, memSize);
src = memPtr;
buffer = src + 128;
PDATA = (USHORT*)(buffer + MAX_EEPROM_BIN_FILE_SIZE);
if(strlen(arg)>0)
NdisMoveMemory(src, arg, strlen(arg));
else
NdisMoveMemory(src, EEPROM_DEFULT_BIN_FILE, strlen(EEPROM_DEFULT_BIN_FILE));
DBGPRINT(RT_DEBUG_OFF, ("FileName=%s\n",src));
RtmpOSFSInfoChange(&osfsInfo, TRUE);
srcf = RtmpOSFileOpen(src, O_RDONLY, 0);
if (IS_FILE_OPEN_ERR(srcf))
{
DBGPRINT_ERR(("--> Error opening file %s\n", src));
retval = FALSE;
goto recoverFS;
}
else
{
/* The object must have a read method*/
while(RtmpOSFileRead(srcf, &buffer[TotalByte], 1)==1)
{
TotalByte++;
if(TotalByte>MAX_EEPROM_BIN_FILE_SIZE)
{
DBGPRINT(RT_DEBUG_ERROR, ("--> Error reading file %s, file size too large[>%d]\n", src, MAX_EEPROM_BIN_FILE_SIZE));
retval = FALSE;
goto closeFile;
}
}
retval = RtmpOSFileClose(srcf);
if (retval)
DBGPRINT(RT_DEBUG_TRACE, ("--> Error closing file %s\n", src));
}
RtmpOSFSInfoChange(&osfsInfo, FALSE);
for(ReadedByte=0;ReadedByte<TotalByte;ReadedByte++)
{
DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[ReadedByte]&0xff));
if((ReadedByte+1)%2==0)
PDATA[ReadedByte/2%8]=((buffer[ReadedByte]<<8)&0xff00)|(buffer[ReadedByte-1]&0xff);
if(ReadedByte%16==0)
{
CompareBuf=buffer[ReadedByte]&0xff;
}
else
{
CompareBuf&=(buffer[ReadedByte]&0xff);
if((ReadedByte+1)%16==0)
{
DBGPRINT(RT_DEBUG_TRACE, (" result=%02X,blk=%02x\n",CompareBuf,ReadedByte/16));
if(CompareBuf!=0xff)
eFuseWriteRegistersFromBin(pAd,(USHORT)ReadedByte-15, 16, PDATA);
else
{
if(eFuseReadRegisters(pAd,ReadedByte, 2,(PUSHORT)&DATA)!=0x3f)
eFuseWriteRegistersFromBin(pAd,(USHORT)ReadedByte-15, 16, PDATA);
}
/*
for(l=0;l<8;l++)
printk("%04x ",PDATA[l]);
printk("\n");
*/
NdisZeroMemory(PDATA,16);
}
}
}
return TRUE;
closeFile:
if (srcf)
if (RtmpOSFileClose(srcf) != 0)
retval = FALSE;
recoverFS:
RtmpOSFSInfoChange(&osfsInfo, FALSE);
if (memPtr)
os_free_mem(NULL, memPtr);
return retval;
}
#else
INT set_eFuseLoadFromBin_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
RTMP_STRING *src;
RTMP_OS_FD srcf;
RTMP_OS_FS_INFO osfsInfo;
INT retval, memSize;
RTMP_STRING *buffer, *memPtr;
INT TotalByte= 0;
//USHORT *PDATA;
UCHAR all_ff[16] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
UCHAR *ptr;
UCHAR index;
USHORT offset = 0;
USHORT value;
memSize = 128 + MAX_EEPROM_BIN_FILE_SIZE + sizeof(USHORT) * 8;
/* memPtr = kmalloc(memSize, MEM_ALLOC_FLAG);*/
os_alloc_mem(NULL, (UCHAR **)&memPtr, memSize);
if (memPtr == NULL)
return FALSE;
NdisZeroMemory(memPtr, memSize);
src = memPtr; /* kmalloc(128, MEM_ALLOC_FLAG);*/
buffer = src + 128; /* kmalloc(MAX_EEPROM_BIN_FILE_SIZE, MEM_ALLOC_FLAG);*/
//PDATA = (USHORT*)(buffer + MAX_EEPROM_BIN_FILE_SIZE); /* kmalloc(sizeof(USHORT)*8,MEM_ALLOC_FLAG);*/
ptr = buffer;
if(strlen(arg)>0)
NdisMoveMemory(src, arg, strlen(arg));
else
NdisMoveMemory(src, EEPROM_DEFULT_BIN_FILE, strlen(EEPROM_DEFULT_BIN_FILE));
DBGPRINT(RT_DEBUG_OFF, ("FileName=%s\n",src));
RtmpOSFSInfoChange(&osfsInfo, TRUE);
srcf = RtmpOSFileOpen(src, O_RDONLY, 0);
if (IS_FILE_OPEN_ERR(srcf))
{
DBGPRINT_ERR(("--> Error opening file %s\n", src));
retval = FALSE;
goto recoverFS;
}
else
{
/* The object must have a read method*/
while(RtmpOSFileRead(srcf, &buffer[TotalByte], 1)==1)
{
TotalByte++;
if(TotalByte>MAX_EEPROM_BIN_FILE_SIZE)
{
DBGPRINT(RT_DEBUG_ERROR, ("--> Error reading file %s, file size too large[>%d]\n", src, MAX_EEPROM_BIN_FILE_SIZE));
retval = FALSE;
goto closeFile;
}
}
retval = RtmpOSFileClose(srcf);
if (retval)
DBGPRINT(RT_DEBUG_TRACE, ("--> Error closing file %s\n", src));
}
RtmpOSFSInfoChange(&osfsInfo, FALSE);
for ( offset = 0 ; offset < TotalByte ; offset += 16 )
{
if ( memcmp( ptr, all_ff, 16 ) )
{
DBGPRINT(RT_DEBUG_TRACE, ("offset 0x%04x: ", offset));
for ( index = 0 ; index < 16 ; index += 2 )
{
value = *(USHORT *)(ptr + index);
//eFuseWrite(pAd, offset + index ,&value, 2);
DBGPRINT(RT_DEBUG_TRACE, ("0x%04x ", value));
}
DBGPRINT(RT_DEBUG_TRACE, ("\n"));
}
ptr += 16;
}
return TRUE;
closeFile:
if (srcf)
if (RtmpOSFileClose(srcf) != 0)
retval = FALSE;
recoverFS:
RtmpOSFSInfoChange(&osfsInfo, FALSE);
if (memPtr)
/* kfree(memPtr);*/
os_free_mem(NULL, memPtr);
return retval;
}
#endif
#if 0
static NTSTATUS eFuseWriteRegistersFromBin(
IN PRTMP_ADAPTER pAd,
IN USHORT Offset,
IN USHORT Length,
IN USHORT* pData)
{
USHORT i,StartBlock=0,EndBlock=0;
USHORT eFuseData;
USHORT LogicalAddress, BlkNum = 0xffff;
UCHAR EFSROM_AOUT,Loop=0;
EFUSE_CTRL_STRUC eFuseCtrlStruc;
USHORT efuseDataOffset;
UINT32 data,tempbuffer;
USHORT addr,tmpaddr, InBuf[3], tmpOffset;
UINT32 buffer[4];
BOOLEAN bWriteSuccess = TRUE;
BOOLEAN bNotWrite=TRUE;
BOOLEAN bAllocateNewBlk=TRUE;
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin Offset=%x, pData=%04x:%04x:%04x:%04x\n", Offset, *pData,*(pData+1),*(pData+2),*(pData+3)));
/*set start block and end block number, start from tail of mapping table*/
if( (pAd->chipCap.EFUSE_USAGE_MAP_END % 2) != 0)
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_END-1;
}
else
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_END;
}
if( (pAd->chipCap.EFUSE_USAGE_MAP_START % 2) != 0)
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_START-1;
}
else
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_START;
}
do
{
/*Step 0. find the entry in the mapping table*/
/*The address of EEPROM is 2-bytes alignment.*/
/*The last bit is used for alignment, so it must be 0.*/
Loop++;
tmpOffset = Offset & 0xfffe;
EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
if( EFSROM_AOUT == 0x3f)
{ /*find available logical address pointer */
/*the logical address does not exist, find an empty one*/
/*from the first address of block 45=16*45=0x2d0 to the last address of block 47*/
/*==>48*16-3(reserved)=2FC*/
bAllocateNewBlk=TRUE;
for (i=StartBlock; i>=EndBlock; i-=2)
{
/*Retrive the logical block nubmer form each logical address pointer*/
/*It will access two logical address pointer each time.*/
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
if(( (LogicalAddress >> 8) & 0xff) == 0)
{
if(i != pAd->chipCap.EFUSE_USAGE_MAP_END)
{
BlkNum = i+1-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
if( (LogicalAddress & 0xff) == 0)
{
if(i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
BlkNum = i-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
}
}
else
{
bAllocateNewBlk=FALSE;
BlkNum = EFSROM_AOUT;
}
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
if(BlkNum == 0xffff)
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
return FALSE;
}
/*Step 1.1.0*/
/*If the block is not existing in mapping table, create one */
/*and write down the 16-bytes data to the new block*/
if(bAllocateNewBlk)
{
DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk\n"));
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuseDataOffset = EFUSE_DATA0_3290;
else
#endif
efuseDataOffset = EFUSE_DATA3;
for(i=0; i< 4; i++)
{
DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk, Data%d=%04x%04x\n",3-i,pData[2*i+1],pData[2*i]));
tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
RTMP_IO_WRITE32(pAd, efuseDataOffset,tempbuffer);
efuseDataOffset -= 4;
}
/*Step1.1.1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
RTMP_IO_READ32(pAd, EFUSE_CTRL, &eFuseCtrlStruc.word);
eFuseCtrlStruc.field.EFSROM_AIN = BlkNum* 0x10 ;
/*Step1.1.2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.*/
eFuseCtrlStruc.field.EFSROM_MODE = 3;
/*Step1.1.3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.*/
eFuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
/*Step1.1.4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It's done.*/
i = 0;
while(i < 100)
{
RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
break;
RtmpusecDelay(2);
i++;
}
}
else
{ /*Step1.2.*/
/*If the same logical number is existing, check if the writting data and the data */
/*saving in this block are the same.*/
/*read current values of 16-byte block */
RTMP_IO_READ32(pAd, EFUSE_CTRL, &eFuseCtrlStruc.word);
/*Step1.2.0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.*/
eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
/*Step1.2.1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.*/
eFuseCtrlStruc.field.EFSROM_MODE = 0;
/*Step1.2.2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.*/
eFuseCtrlStruc.field.EFSROM_KICK = 1;
NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
/*Step1.2.3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.*/
i = 0;
while(i < 500)
{
RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
break;
RtmpusecDelay(2);
i++;
}
/*Step1.2.4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)*/
#if defined(RT3290) || defined(RT65xx) || defined(MT7601)
if (IS_RT3290(pAd) || IS_RT65XX(pAd) || IS_MT7601(pAd))
efuseDataOffset = EFUSE_DATA0_3290;
else
#endif
efuseDataOffset = EFUSE_DATA3;
for(i=0; i< 4; i++)
{
RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &buffer[i]);
efuseDataOffset -= 4;
}
/*Step1.2.5. Check if the data of efuse and the writing data are the same.*/
for(i =0; i<4; i++)
{
tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
DBGPRINT(RT_DEBUG_TRACE, ("buffer[%d]=%x,pData[%d]=%x,pData[%d]=%x,tempbuffer=%x\n",i,buffer[i],2*i,pData[2*i],2*i+1,pData[2*i+1],tempbuffer));
if(((buffer[i]&0xffff0000)==(pData[2*i+1]<<16))&&((buffer[i]&0xffff)==pData[2*i]))
bNotWrite&=TRUE;
else
{
bNotWrite&=FALSE;
break;
}
}
if(!bNotWrite)
{
printk("The data is not the same\n");
for(i =0; i<8; i++)
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+2*i;
InBuf[1] = 2;
InBuf[2] = pData[i];
eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
}
}
else
return TRUE;
}
/*Step 2. Write mapping table*/
addr = pAd->chipCap.EFUSE_USAGE_MAP_START+BlkNum;
tmpaddr = addr;
if(addr % 2 != 0)
addr = addr -1;
InBuf[0] = addr;
InBuf[1] = 2;
/*convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry*/
tmpOffset = Offset;
tmpOffset >>= 4;
tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
/* write the logical address*/
if(tmpaddr%2 != 0)
InBuf[2] = tmpOffset<<8;
else
InBuf[2] = tmpOffset;
eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
/*Step 3. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted*/
bWriteSuccess = TRUE;
for(i =0; i<8; i++)
{
addr = BlkNum * 0x10 ;
InBuf[0] = addr+2*i;
InBuf[1] = 2;
InBuf[2] = 0x0;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
DBGPRINT(RT_DEBUG_TRACE, ("addr=%x, buffer[i]=%x,InBuf[2]=%x\n",InBuf[0],pData[i],InBuf[2]));
if(pData[i] != InBuf[2])
{
bWriteSuccess = FALSE;
break;
}
}
/*Step 4. invlidate mapping entry and find a free mapping entry if not succeed*/
if (!bWriteSuccess&&Loop<2)
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess BlkNum = %d\n", BlkNum));
/* the offset of current mapping entry*/
addr = pAd->chipCap.EFUSE_USAGE_MAP_START+BlkNum;
/*find a new mapping entry*/
BlkNum = 0xffff;
for (i=StartBlock; i>=EndBlock; i-=2)
{
/*Retrive the logical block nubmer form each logical address pointer*/
/*It will access two logical address pointer each time.*/
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
if(( (LogicalAddress >> 8) & 0xff) == 0)
{
if(i !=pAd->chipCap.EFUSE_USAGE_MAP_END)
{
BlkNum = i+1-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
if( (LogicalAddress & 0xff) == 0)
{
if(i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
BlkNum = i-pAd->chipCap.EFUSE_USAGE_MAP_START;
break;
}
}
}
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess new BlkNum = %d\n", BlkNum));
if(BlkNum == 0xffff)
{
DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin: out of free E-fuse space!!!\n"));
return FALSE;
}
/*invalidate the original mapping entry if new entry is not found*/
tmpaddr = addr;
if(addr % 2 != 0)
addr = addr -1;
InBuf[0] = addr;
InBuf[1] = 2;
eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
/* write the logical address*/
if(tmpaddr%2 != 0)
{
/* Invalidate the high byte*/
for (i=8; i<15; i++)
{
if( ( (InBuf[2] >> i) & 0x01) == 0)
{
InBuf[2] |= (0x1 <<i);
break;
}
}
}
else
{
/* invalidate the low byte*/
for (i=0; i<8; i++)
{
if( ( (InBuf[2] >> i) & 0x01) == 0)
{
InBuf[2] |= (0x1 <<i);
break;
}
}
}
eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
}
}
while(!bWriteSuccess&&Loop<2);
return TRUE;
}
#endif
BOOLEAN rtmp_ee_efuse_read16(RTMP_ADAPTER *pAd, UINT16 Offset, UINT16 *pValue)
{
UCHAR Value;
Value = eFuseReadRegisters(pAd, Offset, 2, pValue);
if (Value == 0x3F)
{
DBGPRINT(RT_DEBUG_INFO, ("%s: Not found valid block for this offset (%x)\n", __FUNCTION__, Offset));
return TRUE;
}
else
{
return FALSE;
}
}
int rtmp_ee_efuse_write16(
IN RTMP_ADAPTER *pAd,
IN USHORT Offset,
IN USHORT data)
{
eFuseWrite(pAd,Offset ,&data, 2);
return 0;
}
int RtmpEfuseSupportCheck(
IN RTMP_ADAPTER *pAd)
{
USHORT value;
if (IS_RT30xx(pAd) || IS_RT3593(pAd))
{
EfusePhysicalReadRegisters(pAd, EFUSE_TAG, 2, &value);
pAd->EFuseTag = (value & 0xff);
}
return 0;
}
#if 0
INT rtmp_ee_write_to_efuse(
IN PRTMP_ADAPTER pAd)
{
INT read_byte = 0, cmp_buf = 1;
USHORT data, *pdata;
pdata = (USHORT*)(pAd->EEPROMImage + MAX_EEPROM_BIN_FILE_SIZE);
for (read_byte = 0; read_byte < MAX_EEPROM_BIN_FILE_SIZE; read_byte++)
{
DBGPRINT(RT_DEBUG_TRACE, ("%02X ",pAd->EEPROMImage[read_byte] & 0xff));
if ((read_byte+1)%2 == 0)
pdata[read_byte/2%8] = ((pAd->EEPROMImage[read_byte] << 8) & 0xff00) | (pAd->EEPROMImage[read_byte-1] & 0xff);
if (read_byte%16 == 0)
cmp_buf = pAd->EEPROMImage[read_byte] & 0xff;
else
{
cmp_buf &= (pAd->EEPROMImage[read_byte] & 0xff);
if ((read_byte+1)%16 == 0)
{
DBGPRINT(RT_DEBUG_TRACE, ("Result=%02X, blk=%02X\n", cmp_buf, read_byte/16));
if (cmp_buf != 0xff)
eFuseWriteRegistersFromBin(pAd, (USHORT)read_byte - 15, 16, pdata);
else if(eFuseReadRegisters(pAd, read_byte, 2, (PUSHORT)&data) != 0x3f)
eFuseWriteRegistersFromBin(pAd, (USHORT)read_byte - 15, 16, pdata);
NdisZeroMemory(pdata, 16);
}
}
}
return TRUE;
}
#else
INT rtmp_ee_write_to_efuse(
IN PRTMP_ADAPTER pAd)
{
USHORT length = pAd->chipCap.EEPROM_DEFAULT_BIN_SIZE;
UCHAR *ptr = pAd->EEPROMImage;
UCHAR index;
UCHAR all_ff[16] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
USHORT offset = 0;
USHORT value;
for ( offset = 0 ; offset < length ; offset += 16 )
{
if ( memcmp( ptr, all_ff, 16 ) )
{
DBGPRINT(RT_DEBUG_TRACE, ("offset 0x%04x: ", offset));
for ( index = 0 ; index < 16 ; index += 2 )
{
value = le2cpu16(*(USHORT *)(ptr + index));
eFuseWrite(pAd, offset + index ,&value, 2);
DBGPRINT(RT_DEBUG_TRACE, ("0x%04x ", value));
}
DBGPRINT(RT_DEBUG_TRACE, ("\n"));
}
ptr += 16;
}
return TRUE;
}
#endif
VOID eFuseGetFreeBlockCount(IN PRTMP_ADAPTER pAd,
PUINT EfuseFreeBlock)
{
USHORT i=0, StartBlock=0, EndBlock=0;
USHORT LogicalAddress;
USHORT FirstFreeBlock = 0xffff, LastFreeBlock = 0xffff;
#ifndef CAL_FREE_IC_SUPPORT
if(!pAd->bUseEfuse)
{
DBGPRINT(RT_DEBUG_TRACE,("eFuseGetFreeBlockCount Only supports efuse Mode\n"));
return ;
}
#endif /* CAL_FREE_IC_SUPPORT */
*EfuseFreeBlock = 0;
/* find first free block*/
if( (pAd->chipCap.EFUSE_USAGE_MAP_START % 2) != 0)
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_START-1;
}
else
{
StartBlock = pAd->chipCap.EFUSE_USAGE_MAP_START;
}
if( (pAd->chipCap.EFUSE_USAGE_MAP_END % 2) != 0)
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_END-1;
}
else
{
EndBlock = pAd->chipCap.EFUSE_USAGE_MAP_END;
}
for (i = StartBlock; i <= EndBlock; i+=2)
{
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
if( (LogicalAddress & 0xff) == 0)
{
if(i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
FirstFreeBlock = i;
break;
}
}
if(( (LogicalAddress >> 8) & 0xff) == 0)
{
if(i != pAd->chipCap.EFUSE_USAGE_MAP_END)
{
FirstFreeBlock = i+1;
break;
}
}
}
DBGPRINT(RT_DEBUG_TRACE, ("eFuseGetFreeBlockCount, FirstFreeBlock= 0x%x\n", FirstFreeBlock));
/*if not find, return free block number = 0*/
if(FirstFreeBlock == 0xffff)
{
*EfuseFreeBlock = 0;
return;
}
#if 0
/* find last free block*/
if( (pAd->pAd->chipCap.EFUSE_USAGE_MAP_END % 2) != 0)
{
StartBlock = pAd->pAd->chipCap.EFUSE_USAGE_MAP_END-1;
}
else
{
StartBlock = pAd->pAd->chipCap.EFUSE_USAGE_MAP_END;
}
if( (pAd->pAd->chipCap.EFUSE_USAGE_MAP_START % 2) != 0)
{
EndBlock = pAd->pAd->chipCap.EFUSE_USAGE_MAP_START-1;
}
else
{
EndBlock = pAd->pAd->chipCap.EFUSE_USAGE_MAP_START;
}
#endif
for (i = EndBlock; i >= StartBlock; i-=2)
{
EfusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
if(( (LogicalAddress >> 8) & 0xff) == 0)
{
if(i != pAd->chipCap.EFUSE_USAGE_MAP_END)
{
LastFreeBlock = i+1;
break;
}
}
if( (LogicalAddress & 0xff) == 0)
{
if(i != (pAd->chipCap.EFUSE_USAGE_MAP_START-1))
{
LastFreeBlock = i;
break;
}
}
}
DBGPRINT(RT_DEBUG_TRACE, ("eFuseGetFreeBlockCount, LastFreeBlock= 0x%x\n", LastFreeBlock));
/*if not find last free block, return free block number = 0, this should not happen since we have checked first free block number previously*/
if(LastFreeBlock == 0xffff)
{
*EfuseFreeBlock = 0;
return;
}
/* return total free block number, last free block number must >= first free block number*/
if(LastFreeBlock < FirstFreeBlock)
{
*EfuseFreeBlock = 0;
}
else
{
*EfuseFreeBlock = LastFreeBlock - FirstFreeBlock + 1;
}
DBGPRINT(RT_DEBUG_TRACE,("eFuseGetFreeBlockCount is %d\n",*EfuseFreeBlock));
}
INT eFuse_init(RTMP_ADAPTER *pAd)
{
UINT EfuseFreeBlock=0;
#if defined(CAL_FREE_IC_SUPPORT) && !defined(CONFIG_COB_SOLUTION_SUPPORT)
BOOLEAN bCalFree;
#endif /* defined(CAL_FREE_IC_SUPPORT) && !defined(CONFIG_COB_SOLUTION_SUPPORT) */
/*RT3572 means 3062/3562/3572*/
/*3593 means 3593*/
DBGPRINT(RT_DEBUG_ERROR, ("NVM is Efuse and its size =%x[%x-%x] \n",pAd->chipCap.EFUSE_USAGE_MAP_SIZE,pAd->chipCap.EFUSE_USAGE_MAP_START,pAd->chipCap.EFUSE_USAGE_MAP_END));
eFuseGetFreeBlockCount(pAd, &EfuseFreeBlock);
/*If the used block of efuse is less than 5. We assume the default value*/
/* of this efuse is empty and change to the buffer mode in odrder to */
/*bring up interfaces successfully.*/
if (EfuseFreeBlock >= pAd->chipCap.EFUSE_RESERVED_SIZE)
{
DBGPRINT(RT_DEBUG_OFF, ("NVM is efuse and the information is too less to bring up the interface\n"));
DBGPRINT(RT_DEBUG_OFF, ("Load EEPROM buffer from BIN, and force to use BIN buffer mode\n"));
pAd->bUseEfuse = FALSE;
rtmp_ee_load_from_bin(pAd);
/* Forse to use BIN eeprom buffer mode */
RtmpChipOpsEepromHook(pAd, pAd->infType,E2P_BIN_MODE);
#if defined(CAL_FREE_IC_SUPPORT) && !defined(CONFIG_COB_SOLUTION_SUPPORT)
RTMP_CAL_FREE_IC_CHECK(pAd,bCalFree);
if (bCalFree)
{
DBGPRINT(RT_DEBUG_OFF, ("Cal Free IC!!\n"));
RTMP_CAL_FREE_DATA_GET(pAd);
}
else
{
DBGPRINT(RT_DEBUG_OFF, ("Non Cal Free IC!!\n"));
}
#endif /* defined(CAL_FREE_IC_SUPPORT) && !defined(CONFIG_COB_SOLUTION_SUPPORT) */
}
else
{
rtmp_ee_load_from_efuse(pAd);
}
return 0;
}
INT efuse_probe(RTMP_ADAPTER *pAd)
{
UINT32 eFuseCtrl, ctrl_reg;
if (WaitForAsicReady(pAd) == FALSE)
return -1;
pAd->bUseEfuse=FALSE;
#ifdef MT_MAC
if (pAd->chipCap.hif_type == HIF_MT)
ctrl_reg = MT_EE_CTRL;
else
#endif /* MT_MAC */
#ifdef RT65xx
// TODO: shiang-6590, find a better naming for EFUSE_CTRL_3290!!
if (IS_RT65XX(pAd))
ctrl_reg = EFUSE_CTRL_3290;
else
#endif /* RT65xx */
#ifdef MT7601
if (IS_MT7601(pAd))
ctrl_reg = EFUSE_CTRL_3290;
else
#endif /* MT7601 */
#ifdef RT3290
if (IS_RT3290(pAd))
ctrl_reg = EFUSE_CTRL_3290;
else
#endif /* RT3290 */
ctrl_reg = EFUSE_CTRL;
EFUSE_IO_READ32(pAd, ctrl_reg, &eFuseCtrl);
DBGPRINT(RT_DEBUG_OFF, ("%s: efuse = %x\n", __func__, eFuseCtrl));
if (pAd->chipCap.hif_type == HIF_MT)
{
if ((eFuseCtrl & 0x40000000) == 0x40000000)
pAd->bUseEfuse = 0;
else
pAd->bUseEfuse = 1;
}
else
{
pAd->bUseEfuse = ( (eFuseCtrl & 0x80000000) == 0x80000000) ? 1 : 0;
}
return 0;
}
VOID rtmp_ee_load_from_efuse(RTMP_ADAPTER *pAd)
{
UINT16 efuse_val=0;
UINT free_blk = 0;
UINT i;
DBGPRINT(RT_DEBUG_OFF,("Load EEPROM buffer from efuse, and change to BIN buffer mode\n"));
/* If the number of the used block is less than 5, assume the efuse is not well-calibrated, and force to use buffer mode */
eFuseGetFreeBlockCount(pAd, &free_blk);
if (free_blk > (pAd->chipCap.EFUSE_USAGE_MAP_SIZE - 5))
return ;
NdisZeroMemory(pAd->EEPROMImage, MAX_EEPROM_BIN_FILE_SIZE);
for(i=0; i<MAX_EEPROM_BIN_FILE_SIZE; i+=2)
{
eFuseRead(pAd, (USHORT)i, &efuse_val, 2);
efuse_val = cpu2le16 (efuse_val);
NdisMoveMemory(&pAd->EEPROMImage[i],&efuse_val,2);
}
/* Change to BIN eeprom buffer mode */
RtmpChipOpsEepromHook(pAd, pAd->infType,E2P_BIN_MODE);
}
#ifdef CONFIG_ATE
INT Set_LoadEepromBufferFromEfuse_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
/*long bEnable = simple_strtol(arg, 0, 10);*/
LONG res;
int bEnable = kstrtol(arg, 10, &res);
if (bEnable < 0)
return FALSE;
else
{
rtmp_ee_load_from_efuse(pAd);
return TRUE;
}
}
INT set_eFuseBufferModeWriteBack_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
int bEnable;
LONG res;
bEnable = kstrtol(arg, 10, &res);
if (bEnable < 0)
return FALSE;
else
{
DBGPRINT(RT_DEBUG_TRACE, ("%s::Write EEPROM buffer back to eFuse\n", __FUNCTION__));
Set_EepromBufferWriteBack_Proc(pAd, "1");
return TRUE;
}
}
INT set_BinModeWriteBack_Proc(RTMP_ADAPTER *pAd, RTMP_STRING *arg)
{
LONG res;
int bEnable = kstrtol(arg, 10, &res);
if (bEnable < 0)
return FALSE;
else
{
DBGPRINT(RT_DEBUG_TRACE, ("%s::Write EEPROM buffer back to BIN\n", __FUNCTION__));
Set_EepromBufferWriteBack_Proc(pAd, "4");
return TRUE;
}
}
#endif /* CONFIG_ATE */
#endif /* RTMP_EFUSE_SUPPORT */