Files
Linux_Drivers/fsbl/lib/BigDigits/bigdigits.h
forum_service 88cce7a8a2 fsbl: weekly update 2023-03-25
1. update release func

Change-Id: I221476630ce4f2f6a01e8f89fd96d9ac9701a270
2023-03-27 00:22:46 +08:00

578 lines
21 KiB
C

/* $Id: bigdigits.h $ */
/** @file
Interface to core BigDigits "mp" functions using fixed-length arrays
*/
/***** BEGIN LICENSE BLOCK *****
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright (c) 2001-16 David Ireland, D.I. Management Services Pty Limited
* <http://www.di-mgt.com.au/bigdigits.html>. All rights reserved.
*
***** END LICENSE BLOCK *****/
/*
* Last updated:
* $Date: 2016-03-31 09:51:00 $
* $Revision: 2.6.1 $
* $Author: dai $
*/
#ifndef BIGDIGITS_H_
#define BIGDIGITS_H_ 1
#include <stdlib.h>
#include "bigdtypes.h"
/**** USER CONFIGURABLE SECTION ****/
/* Define type and size of DIGIT */
/* [v2.1] Changed to use C99 exact-width types. */
/* [v2.2] Put macros for exact-width types in separate file "bigdtypes.h" */
/** The basic BigDigit element, an unsigned 32-bit integer */
typedef uint32_t DIGIT_T;
/** @cond */
typedef uint16_t HALF_DIGIT_T;
/* Sizes to match */
#define MAX_DIGIT 0xFFFFFFFFUL
#define MAX_HALF_DIGIT 0xFFFFUL /* NB 'L' */
#define BITS_PER_DIGIT 32
#define HIBITMASK 0x80000000UL
/* [v2.2] added option to avoid allocating temp storage in the heap
and use (faster) fixed automatic arrays on the stack instead.
Define NO_ALLOCS to invoke this.
Only applicable to mp functions. Do not use with bd.
*/
/* Specify the maximum number of digits allowed in a temp mp array
-- ignored unless NO_ALLOCS is defined
-- [v2.6] user may override MAX_FIXED_BIT_LENGTH with global definition
e.g. /D "MAX_FIXED_BIT_LENGTH=640" or -D MAX_FIXED_BIT_LENGTH=640
*/
#ifdef NO_ALLOCS
#ifndef MAX_FIXED_BIT_LENGTH
#define MAX_FIXED_BIT_LENGTH 8192
#endif
#define MAX_FIXED_DIGITS ((MAX_FIXED_BIT_LENGTH + BITS_PER_DIGIT - 1) / BITS_PER_DIGIT)
#endif
/**** END OF USER CONFIGURABLE SECTION ****/
/**** OPTIONAL PREPROCESSOR DEFINITIONS ****/
/*
Choose one of {USE_SPASM | USE_64WITH32}
USE_SPASM: to use the faster x86 ASM routines (if __asm option is available with your compiler).
USE_64WITH32: to use the 64-bit integers if available (e.g. long long).
Default: use default internal routines spDivide and spMultiply.
The USE_SPASM option takes precedence over USE_64WITH32.
*/
/* Useful macros */
#define ISODD(x) ((x) & 0x1)
#define ISEVEN(x) (!ISODD(x))
#define mpISODD(x, n) (x[0] & 0x1)
#define mpISEVEN(x, n) (!(x[0] & 0x1))
#ifdef __cplusplus
extern "C" {
#endif
/* Forces linker to include copyright notice in executable */
volatile char *copyright_notice(void);
/** @endcond */
/*
* Multiple precision calculations
* Using known, equal ndigits
* except where noted
*/
/*************************/
/* ARITHMETIC OPERATIONS */
/*************************/
/** Computes w = u + v, returns carry
@pre `w` and `v` must not overlap.
*/
DIGIT_T mpAdd(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T v[], size_t ndigits);
/** Computes w = u - v, returns borrow
@pre `w` and `v` must not overlap.
*/
DIGIT_T mpSubtract(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T v[], size_t ndigits);
/** Computes product w = u * v
@param[out] w To receive the product, an array of size 2 x `ndigits`
@param[in] u An array of size `ndigits`
@param[in] v An array of size `ndigits`
@param[in] ndigits size of arrays `u` and `v`
@pre `w` and `u` must not overlap.
@warning The product must be of size 2 x `ndigits`
*/
int mpMultiply(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T v[], size_t ndigits);
/** Computes integer division of u by v such that u=qv+r
@param[out] q to receive quotient = u div v, an array of size `udigits`
@param[out] r to receive divisor = u mod v, an array of size `udigits`
@param[in] u dividend of size `udigits`
@param[in] udigits size of arrays `q` `r` and `u`
@param[in] v divisor of size `vdigits`
@param[in] vdigits size of array `v`
@pre `q` and `r` must be independent of `u` and `v`.
@warning Trashes q and r first
*/
int mpDivide(DIGIT_T q[], DIGIT_T r[], const DIGIT_T u[],
size_t udigits, DIGIT_T v[], size_t vdigits);
/** Computes remainder r = u mod v
@param[out] r to receive divisor = u mod v, an array of size `vdigits`
@param[in] u dividend of size `udigits`
@param[in] udigits size of arrays `r` and `u`
@param[in] v divisor of size `vdigits`
@param[in] vdigits size of array `v`
@pre `r` and `u` must not overlap.
@remark Note that `r` is `vdigits` long here, but is `udigits` long in mpDivide().
*/
int mpModulo(DIGIT_T r[], const DIGIT_T u[], size_t udigits, DIGIT_T v[], size_t vdigits);
/** Computes square w = x^2
@param[out] w array of size 2 x `ndigits` to receive square
@param[in] x array of size `ndigits`
@param[in] ndigits size of array `x`
@pre `w` and `x` must not overlap.
@warning The product `w` must be of size 2 x `ndigits`
*/
int mpSquare(DIGIT_T w[], const DIGIT_T x[], size_t ndigits);
/** Computes integer square root s = floor(sqrt(x)) */
int mpSqrt(DIGIT_T s[], const DIGIT_T x[], size_t ndigits);
/** Computes integer cube root s = floor(cuberoot(x)) */
int mpCubeRoot(DIGIT_T s[], const DIGIT_T x[], size_t ndigits);
/*************************/
/* COMPARISON OPERATIONS */
/*************************/
/** Returns true if a == b, else false
* @remark Not constant-time.
*/
int mpEqual(const DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/** Returns sign of `(a-b)` as `{-1,0,+1}`
* @remark Not constant-time.
*/
int mpCompare(const DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/** Returns true if a is zero, else false
* @remark Not constant-time.
*/
int mpIsZero(const DIGIT_T a[], size_t ndigits);
/***************************************/
/* CONSTANT-TIME COMPARISON ALGORITHMS */
/***************************************/
/* -- added [v2.5] to replace originals. Renamed as "_ct" in [v2.6] */
/** Returns true if a == b, else false, using constant-time algorithm */
int mpEqual_ct(const DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/** Returns sign of `(a-b)` as `{-1,0,+1}` using constant-time algorithm */
int mpCompare_ct(const DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/** Returns true if a is zero, else false, using constant-time algorithm */
int mpIsZero_ct(const DIGIT_T a[], size_t ndigits);
/* Keep the faith for [v2.5] users - DEPRECATED in [v2.6] */
#define mpEqual_q(a,b,n) mpEqual((a),(b),(n))
#define mpCompare_q(a,b,n) mpCompare((a),(b),(n))
#define mpIsZero_q(a,n) mpIsZero((a),(n))
/****************************/
/* NUMBER THEORY OPERATIONS */
/****************************/
/* [v2.2] removed `const` restriction on m[] for mpModMult and mpModExp
* (to allow faster in-place manipulation instead of using a temp variable).
* [v2.5] added mpModExp_ct(), a constant-time variant of mpModExp().
* [v2.6] added mpModSquare(), mpModAdd(), mpModSubtract() and mpModSqrt().
*/
/** Computes y = x^e mod m */
int mpModExp(DIGIT_T y[], const DIGIT_T x[], const DIGIT_T e[], DIGIT_T m[], size_t ndigits);
/** Computes y = x^e mod m in constant time
* @remark Resistant to simple power analysis attack on private exponent.
* Slower than mpModExp().
*/
int mpModExp_ct(DIGIT_T yout[], const DIGIT_T x[], const DIGIT_T e[], DIGIT_T m[], size_t ndigits);
/** Computes a = (x * y) mod m */
int mpModMult(DIGIT_T a[], const DIGIT_T x[], const DIGIT_T y[], DIGIT_T m[], size_t ndigits);
/** Computes a = x^2 mod m */
int mpModSquare(DIGIT_T a[], const DIGIT_T x[], DIGIT_T m[], size_t ndigits);
/** Computes the inverse of `u` modulo `m`, inv = u^{-1} mod m */
int mpModInv(DIGIT_T inv[], const DIGIT_T u[], const DIGIT_T m[], size_t ndigits);
/** Computes g = gcd(x, y), the greatest common divisor of x and y */
int mpGcd(DIGIT_T g[], const DIGIT_T x[], const DIGIT_T y[], size_t ndigits);
/** Returns the Jacobi symbol (a/n) in {-1, 0, +1}
@remark If n is prime then the Jacobi symbol becomes the Legendre symbol (a/p) defined to be
- (a/p) = +1 if a is a quadratic residue modulo p
- (a/p) = -1 if a is a quadratic non-residue modulo p
- (a/p) = 0 if a is divisible by p
*/
int mpJacobi(const DIGIT_T a[], const DIGIT_T n[], size_t ndigits);
/** Computes x = one square root of an integer `a` modulo an odd prime `p`
* @param x To receive the result
* @param a An integer expected to be a quadratic residue modulo p
* @param p An odd prime
* @param ndigits The number of digits in each of the parameters
* @return 0 if successful, or -1 if square root does not exist
* @remark More precisely, find an integer x such that x^2 mod p = a.
* Uses the Tonelli-Shanks algorithm. The other square root is `p - x`.
* @warning Check the return value before using the result `x`.
*/
int mpModSqrt(DIGIT_T x[], const DIGIT_T a[], DIGIT_T p[], size_t ndigits);
/** Computes w = u/2 (mod p) for an odd prime p
* @pre Require u to be in the range `[0,p-1]` */
void mpModHalve(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T p[], size_t ndigits);
/** Computes w = u + v (mod m)
* @pre Require u and v to be in the range `[0, m-1]`.
* The variables `w` and `v` must not overlap.
* @remark Quicker than adding then using mpModulo()
*/
void mpModAdd(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T v[], const DIGIT_T m[], size_t ndigits);
/** Computes w = u - v (mod m)
* @pre Require u and v to be in the range `[0, m-1]`.
* The variables `w` and `v` must not overlap.
* @remark Quicker than subtracting then using mpModulo()
*/
void mpModSub(DIGIT_T w[], const DIGIT_T u[], const DIGIT_T v[], const DIGIT_T m[], size_t ndigits);
/** Computes u = v (mod m) in the special case where `0<=v<km` for small k
* @remark Uses subtraction instead of division, so is much faster than mpModulo() in this case.
* @pre `v` is in the range `[0,km]` where `k` is a small integer
* @warning Use only if you know `k` is small, say < 3.
*/
void mpModSpecial(DIGIT_T u[], const DIGIT_T v[], const DIGIT_T m[], size_t ndigits);
/**********************/
/* BITWISE OPERATIONS */
/**********************/
/** Returns number of significant bits in a */
size_t mpBitLength(const DIGIT_T a[], size_t ndigits);
/** Computes a = b << x */
DIGIT_T mpShiftLeft(DIGIT_T a[], const DIGIT_T b[], size_t x, size_t ndigits);
/** Computes a = b >> x */
DIGIT_T mpShiftRight(DIGIT_T a[], const DIGIT_T b[], size_t x, size_t ndigits);
/** Computes bitwise a = b XOR c */
void mpXorBits(DIGIT_T a[], const DIGIT_T b[], const DIGIT_T c[], size_t ndigits);
/** Computes bitwise a = b OR c */
void mpOrBits(DIGIT_T a[], const DIGIT_T b[], const DIGIT_T c[], size_t ndigits);
/** Computes bitwise a = b AND c */
void mpAndBits(DIGIT_T a[], const DIGIT_T b[], const DIGIT_T c[], size_t ndigits);
/** Computes bitwise a = NOT b */
void mpNotBits(DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/** Computes a = a mod 2^L, ie clears all bits greater than L */
void mpModPowerOf2(DIGIT_T a[], size_t ndigits, size_t L);
/** Sets bit n of a (0..nbits-1) with value 1 or 0 */
int mpSetBit(DIGIT_T a[], size_t ndigits, size_t n, int value);
/** Returns value 1 or 0 of bit n (0..nbits-1) */
int mpGetBit(const DIGIT_T a[], size_t ndigits, size_t n);
/*************************/
/* ASSIGNMENT OPERATIONS */
/*************************/
/** Sets a = 0 */
volatile DIGIT_T mpSetZero(volatile DIGIT_T a[], size_t ndigits);
/** Sets a = d where d is a single digit */
void mpSetDigit(DIGIT_T a[], DIGIT_T d, size_t ndigits);
/** Sets a = b */
void mpSetEqual(DIGIT_T a[], const DIGIT_T b[], size_t ndigits);
/**********************/
/* OTHER MP UTILITIES */
/**********************/
/** Returns number of significant non-zero digits in a */
size_t mpSizeof(const DIGIT_T a[], size_t ndigits);
/** Returns true (1) if `w` is probably prime
@param[in] w Number to test
@param[in] ndigits size of array `w`
@param[in] t The count of Rabin-Miller primality tests to carry out (recommended at least 80)
@returns true (1) if w is probably prime otherwise false (0)
@remark Uses FIPS-186-2/Rabin-Miller with trial division by small primes,
which is faster in most cases than mpRabinMiller().
@see mpRabinMiller().
*/
int mpIsPrime(DIGIT_T w[], size_t ndigits, size_t t);
/** Returns true (1) if `w` is probably prime using just the Rabin-Miller test
@see mpIsPrime() is preferred.
*/
int mpRabinMiller(DIGIT_T w[], size_t ndigits, size_t t);
/**********************************************/
/* FUNCTIONS THAT OPERATE WITH A SINGLE DIGIT */
/**********************************************/
/** Computes w = u + d, returns carry */
DIGIT_T mpShortAdd(DIGIT_T w[], const DIGIT_T u[], DIGIT_T d, size_t ndigits);
/** Computes w = u - d, returns borrow */
DIGIT_T mpShortSub(DIGIT_T w[], const DIGIT_T u[], DIGIT_T d, size_t ndigits);
/** Computes product p = x * d */
DIGIT_T mpShortMult(DIGIT_T p[], const DIGIT_T x[], DIGIT_T d, size_t ndigits);
/** Computes quotient q = u div d, returns remainder */
DIGIT_T mpShortDiv(DIGIT_T q[], const DIGIT_T u[], DIGIT_T d, size_t ndigits);
/** Computes remainder r = a mod d */
DIGIT_T mpShortMod(const DIGIT_T a[], DIGIT_T d, size_t ndigits);
/** Returns sign of (a - d) where d is a single digit */
int mpShortCmp(const DIGIT_T a[], DIGIT_T d, size_t ndigits);
/** Returns true if a == d, else false, where d is a single digit */
int mpShortIsEqual(const DIGIT_T a[], DIGIT_T d, size_t ndigits);
/** Returns the least significant digit in a */
DIGIT_T mpToShort(const DIGIT_T a[], size_t ndigits);
/**************************************/
/* CORE SINGLE PRECISION CALCULATIONS */
/* (double where necessary) */
/**************************************/
/* NOTE spMultiply and spDivide are used by almost all mp functions.
Using the Intel MASM alternatives gives significant speed improvements
-- to use, define USE_SPASM as a preprocessor directive.
[v2.2] Removed references to spasm* versions.
*/
/** Computes p = x * y, where x and y are single digits */
int spMultiply(DIGIT_T p[2], DIGIT_T x, DIGIT_T y);
/** Computes quotient q = u div v, remainder r = u mod v, where q, r and v are single digits */
DIGIT_T spDivide(DIGIT_T *q, DIGIT_T *r, const DIGIT_T u[2], DIGIT_T v);
/****************************/
/* RANDOM NUMBER FUNCTIONS */
/* CAUTION: NOT thread-safe */
/****************************/
/** Returns a simple pseudo-random digit between lower and upper.
@remark Not crypto secure.
@see spBetterRand()
*/
DIGIT_T spSimpleRand(DIGIT_T lower, DIGIT_T upper);
/** Generate a quick-and-dirty random mp number a of bit length at most `nbits` using plain-old-rand
@remark Not crypto secure.
@see mpRandomBits()
*/
size_t mpQuickRandBits(DIGIT_T a[], size_t ndigits, size_t nbits);
/* [Version 2.1: spBetterRand moved to spRandom.h] */
/*******************/
/* PRINT UTILITIES */
/*******************/
/* [v2.3] Added these more convenient print functions */
/** Print in hex format with optional prefix and suffix strings */
void mpPrintHex(const char *prefix, const DIGIT_T *a, size_t ndigits, const char *suffix);
/** Print in decimal format with optional prefix and suffix strings */
void mpPrintDecimal(const char *prefix, const DIGIT_T *a, size_t ndigits, const char *suffix);
/* See also mpPrintDecimalSigned() - new in [v2.5] */
/* New in [v2.6] */
/** Print in bit (0/1) format with optional prefix and suffix strings */
void mpPrintBits(const char *prefix, DIGIT_T *a, size_t ndigits, const char *suffix);
/* OLDER PRINT FUNCTIONS, ALL PRINTING IN HEX */
/** Print all digits in hex incl leading zero digits */
void mpPrint(const DIGIT_T *a, size_t ndigits);
/** Print all digits in hex with newlines */
void mpPrintNL(const DIGIT_T *a, size_t ndigits);
/** Print in hex but trim leading zero digits
@deprecated Use mpPrintHex()
*/
void mpPrintTrim(const DIGIT_T *a, size_t ndigits);
/** Print in hex, trim leading zeroes, add newlines
@deprecated Use mpPrintHex()
*/
void mpPrintTrimNL(const DIGIT_T *a, size_t ndigits);
/************************/
/* CONVERSION UTILITIES */
/************************/
/** Converts nbytes octets into big digit a of max size ndigits
@returns actual number of digits set */
size_t mpConvFromOctets(DIGIT_T a[], size_t ndigits, const unsigned char *c, size_t nbytes);
/** Converts big digit a into string of octets, in big-endian order, padding to nbytes or truncating if necessary.
@returns number of non-zero octets required. */
size_t mpConvToOctets(const DIGIT_T a[], size_t ndigits, unsigned char *c, size_t nbytes);
/** Converts a string in decimal format to a big digit.
@returns actual number of (possibly zero) digits set. */
size_t mpConvFromDecimal(DIGIT_T a[], size_t ndigits, const char *s);
/** Converts big digit a into a string in decimal format, where s has size smax including the terminating zero.
@returns number of chars required excluding leading zeroes. */
size_t mpConvToDecimal(const DIGIT_T a[], size_t ndigits, char *s, size_t smax);
/** Converts a string in hexadecimal format to a big digit.
@return actual number of (possibly zero) digits set. */
size_t mpConvFromHex(DIGIT_T a[], size_t ndigits, const char *s);
/** Converts big digit a into a string in hexadecimal format,
where s has size smax including the terminating zero.
@return number of chars required excluding leading zeroes. */
size_t mpConvToHex(const DIGIT_T a[], size_t ndigits, char *s, size_t smax);
/****************************/
/* SIGNED INTEGER FUNCTIONS */
/****************************/
/*
NOTES ON SIGNED-INTEGER OPERATIONS
----------------------------------
You can choose to treat BigDigits integers as "signed" with their values stored in two's-complement representation.
A negative number will be a BigDigit integer with its left-most bit set to one, i.e.
mpGetBit(a, ndigits, (ndigits * BITS_PER_DIGIT - 1)) == 1
This works automatically for simple arithmetic operations like add, subtract and multiply (but not division).
For example,
mpSetDigit(u, 2, NDIGITS);
mpSetDigit(v, 5, NDIGITS);
mpSubtract(w, u, v, NDIGITS);
mpPrintDecimalSigned("signed w=", w, NDIGITS, "\n");
mpPrintHex("unsigned w=", w, NDIGITS, "\n");
will result in the output
signed w=-3
unsigned w=0xfffffffffffffffffffffffffffffffd
It does *not* work for division or any number-theoretic function like mpModExp(),
all of which treat their parameters as "unsigned" integers and will not give the "signed" result you expect.
To set a small negative number do:
mpSetDigit(v, 5, NDIGITS);
mpChs(v, v, NDIGITS);
--------------
*/
/** Returns true (1) if x < 0, else false (0)
* @remark Expects a negative number to be stored in two's-complement representation.
*/
int mpIsNegative(const DIGIT_T x[], size_t ndigits);
/** Sets x = -y
* @remark Expects a negative number to be stored in two's-complement representation.
*/
int mpChs(DIGIT_T x[], const DIGIT_T y[], size_t ndigits);
/** Sets x = |y|, the absolute value of y
* @remark Expects a negative number to be stored in two's-complement representation.
*/
int mpAbs(DIGIT_T x[], const DIGIT_T y[], size_t ndigits);
/* New in [v2.5] - note that `a` is not `const` */
/** Print a signed integer in decimal format with optional prefix and suffix strings
* @remark Expects a negative number to be stored in two's-complement representation.
*/
void mpPrintDecimalSigned(const char *prefix, DIGIT_T *a, size_t ndigits, const char *suffix);
/****************/
/* VERSION INFO */
/****************/
/** Returns version number = major*1000+minor*100+release*10+PP_OPTIONS */
int mpVersion(void);
/* Version number = major*1000+minor*100+release*10+uses_asm(0|1)+uses_64(0|2)+uses_noalloc(0|5)
E.g. Version 2.3.0 will return 230x where x denotes the preprocessor options
x | USE_SPASM | USE_64WITH32 | NO_ALLOCS
----------------------------------------
0 No No No
1 Yes No No
2 No Yes No
3 Yes Yes* No
5 No No Yes
6 Yes No Yes
7 No Yes Yes
8 Yes Yes* Yes
----------------------------------------
* USE_SPASM will take precedence over USE_64WITH32.
*/
/** Returns a pointer to a static string containing the time of compilation */
const char *mpCompileTime(void);
/** @cond */
/*************************************************************/
/* MEMORY ALLOCATION FUNCTIONS - USED INTERNALLY AND BY BIGD */
/*************************************************************/
/* [v2.2] added option to avoid memory allocation if NO_ALLOCS is defined */
#ifndef NO_ALLOCS
DIGIT_T *mpAlloc(size_t ndigits);
void mpFree(DIGIT_T **p);
#endif
void mpFail(char *msg);
/* Clean up by zeroising and freeing allocated memory */
#ifdef NO_ALLOCS
#define mpDESTROY(b, n) do{if(b != NULL)mpSetZero(b,n);}while(0)
#else
#define mpDESTROY(b, n) do{if(b)mpSetZero(b,n);mpFree(&b);}while(0)
#endif
/** @endcond */
#ifdef __cplusplus
}
#endif
#endif /* BIGDIGITS_H_ */