2228 lines
82 KiB
Plaintext
2228 lines
82 KiB
Plaintext
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2018 NXP
|
|
* All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "fsl_dspi.h"
|
|
|
|
/*******************************************************************************
|
|
* Definitions
|
|
******************************************************************************/
|
|
|
|
/* Component ID definition, used by tools. */
|
|
#ifndef FSL_COMPONENT_ID
|
|
#define FSL_COMPONENT_ID "platform.drivers.dspi"
|
|
#endif
|
|
|
|
/*! @brief Typedef for master interrupt handler. */
|
|
typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle);
|
|
|
|
/*! @brief Typedef for slave interrupt handler. */
|
|
typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
/*!
|
|
* @brief Configures the DSPI peripheral chip select polarity.
|
|
*
|
|
* This function takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
|
|
* configures the Pcs signal to operate with the desired characteristic.
|
|
*
|
|
* @param base DSPI peripheral address.
|
|
* @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to
|
|
* apply the active high or active low characteristic.
|
|
* @param activeLowOrHigh The setting for either "active high, inactive low (0)" or "active low, inactive high(1)" of
|
|
* type dspi_pcs_polarity_config_t.
|
|
*/
|
|
static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh);
|
|
|
|
/*!
|
|
* @brief Master fill up the TX FIFO with data.
|
|
* This is not a public API.
|
|
*/
|
|
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief Master finish up a transfer.
|
|
* It would call back if there is callback function and set the state to idle.
|
|
* This is not a public API.
|
|
*/
|
|
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief Slave fill up the TX FIFO with data.
|
|
* This is not a public API.
|
|
*/
|
|
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief Slave finish up a transfer.
|
|
* It would call back if there is callback function and set the state to idle.
|
|
* This is not a public API.
|
|
*/
|
|
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief DSPI common interrupt handler.
|
|
*
|
|
* @param base DSPI peripheral address.
|
|
* @param handle pointer to g_dspiHandle which stores the transfer state.
|
|
*/
|
|
static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
|
|
|
|
/*!
|
|
* @brief Master prepare the transfer.
|
|
* Basically it set up dspi_master_handle .
|
|
* This is not a public API.
|
|
*/
|
|
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);
|
|
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
|
|
/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
|
|
static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
|
|
static const uint32_t s_baudrateScaler[] = {2, 4, 6, 8, 16, 32, 64, 128,
|
|
256, 512, 1024, 2048, 4096, 8192, 16384, 32768};
|
|
|
|
static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
|
|
static const uint32_t s_delayScaler[] = {2, 4, 8, 16, 32, 64, 128, 256,
|
|
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
|
|
|
|
/*! @brief Pointers to dspi bases for each instance. */
|
|
static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;
|
|
|
|
/*! @brief Pointers to dspi IRQ number for each instance. */
|
|
static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/*! @brief Pointers to dspi clocks for each instance. */
|
|
static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/*! @brief Pointers to dspi handles for each instance. */
|
|
static void *g_dspiHandle[ARRAY_SIZE(s_dspiBases)];
|
|
|
|
/*! @brief Pointer to master IRQ handler for each instance. */
|
|
static dspi_master_isr_t s_dspiMasterIsr;
|
|
|
|
/*! @brief Pointer to slave IRQ handler for each instance. */
|
|
static dspi_slave_isr_t s_dspiSlaveIsr;
|
|
|
|
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
|
|
volatile uint8_t g_dspiDummyData[ARRAY_SIZE(s_dspiBases)] = {0};
|
|
/**********************************************************************************************************************
|
|
* Code
|
|
*********************************************************************************************************************/
|
|
/*!
|
|
* brief Get instance number for DSPI module.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
*/
|
|
uint32_t DSPI_GetInstance(SPI_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
|
|
/* Find the instance index from base address mappings. */
|
|
for (instance = 0; instance < ARRAY_SIZE(s_dspiBases); instance++)
|
|
{
|
|
if (s_dspiBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < ARRAY_SIZE(s_dspiBases));
|
|
|
|
return instance;
|
|
}
|
|
|
|
/*!
|
|
* brief Dummy data for each instance.
|
|
*
|
|
* The purpose of this API is to avoid MISRA rule8.5 : Multiple declarations of
|
|
* externally-linked object or function g_dspiDummyData.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
*/
|
|
uint8_t DSPI_GetDummyDataInstance(SPI_Type *base)
|
|
{
|
|
uint8_t instance = g_dspiDummyData[DSPI_GetInstance(base)];
|
|
|
|
return instance;
|
|
}
|
|
|
|
/*!
|
|
* brief Set up the dummy data.
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param dummyData Data to be transferred when tx buffer is NULL.
|
|
*/
|
|
void DSPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
|
|
{
|
|
uint32_t instance = DSPI_GetInstance(base);
|
|
g_dspiDummyData[instance] = dummyData;
|
|
}
|
|
|
|
/*!
|
|
* brief Initializes the DSPI master.
|
|
*
|
|
* This function initializes the DSPI master configuration. This is an example use case.
|
|
* code
|
|
* dspi_master_config_t masterConfig;
|
|
* masterConfig.whichCtar = kDSPI_Ctar0;
|
|
* masterConfig.ctarConfig.baudRate = 500000000U;
|
|
* masterConfig.ctarConfig.bitsPerFrame = 8;
|
|
* masterConfig.ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
|
|
* masterConfig.ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
|
|
* masterConfig.ctarConfig.direction = kDSPI_MsbFirst;
|
|
* masterConfig.ctarConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
|
|
* masterConfig.ctarConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
|
|
* masterConfig.ctarConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
|
|
* masterConfig.whichPcs = kDSPI_Pcs0;
|
|
* masterConfig.pcsActiveHighOrLow = kDSPI_PcsActiveLow;
|
|
* masterConfig.enableContinuousSCK = false;
|
|
* masterConfig.enableRxFifoOverWrite = false;
|
|
* masterConfig.enableModifiedTimingFormat = false;
|
|
* masterConfig.samplePoint = kDSPI_SckToSin0Clock;
|
|
* DSPI_MasterInit(base, &masterConfig, srcClock_Hz);
|
|
* endcode
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param masterConfig Pointer to the structure dspi_master_config_t.
|
|
* param srcClock_Hz Module source input clock in Hertz.
|
|
*/
|
|
void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
|
|
{
|
|
assert(NULL != masterConfig);
|
|
|
|
uint32_t temp;
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* enable DSPI clock */
|
|
CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
DSPI_Enable(base, true);
|
|
DSPI_StopTransfer(base);
|
|
|
|
DSPI_SetMasterSlaveMode(base, kDSPI_Master);
|
|
|
|
temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
|
|
SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
|
|
|
|
base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
|
|
SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
|
|
SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
|
|
SPI_MCR_DIS_TXF(0U) | SPI_MCR_DIS_RXF(0U);
|
|
|
|
DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);
|
|
|
|
if (0U == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz))
|
|
{
|
|
assert(false);
|
|
}
|
|
|
|
temp = base->CTAR[masterConfig->whichCtar] &
|
|
~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
|
|
|
|
base->CTAR[masterConfig->whichCtar] = temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1U) |
|
|
SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
|
|
SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) |
|
|
SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);
|
|
|
|
(void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz,
|
|
masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
|
|
(void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz,
|
|
masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
|
|
(void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
|
|
masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
|
|
|
|
DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
|
|
DSPI_StartTransfer(base);
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the dspi_master_config_t structure to default values.
|
|
*
|
|
* The purpose of this API is to get the configuration structure initialized for the DSPI_MasterInit().
|
|
* Users may use the initialized structure unchanged in the DSPI_MasterInit() or modify the structure
|
|
* before calling the DSPI_MasterInit().
|
|
* Example:
|
|
* code
|
|
* dspi_master_config_t masterConfig;
|
|
* DSPI_MasterGetDefaultConfig(&masterConfig);
|
|
* endcode
|
|
* param masterConfig pointer to dspi_master_config_t structure
|
|
*/
|
|
void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
|
|
{
|
|
assert(NULL != masterConfig);
|
|
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(masterConfig, 0, sizeof(*masterConfig));
|
|
|
|
masterConfig->whichCtar = kDSPI_Ctar0;
|
|
masterConfig->ctarConfig.baudRate = 500000;
|
|
masterConfig->ctarConfig.bitsPerFrame = 8;
|
|
masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
|
|
masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
|
|
masterConfig->ctarConfig.direction = kDSPI_MsbFirst;
|
|
|
|
masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
|
|
masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
|
|
masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;
|
|
|
|
masterConfig->whichPcs = kDSPI_Pcs0;
|
|
masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;
|
|
|
|
masterConfig->enableContinuousSCK = false;
|
|
masterConfig->enableRxFifoOverWrite = false;
|
|
masterConfig->enableModifiedTimingFormat = false;
|
|
masterConfig->samplePoint = kDSPI_SckToSin0Clock;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI slave configuration.
|
|
*
|
|
* This function initializes the DSPI slave configuration. This is an example use case.
|
|
* code
|
|
* dspi_slave_config_t slaveConfig;
|
|
* slaveConfig->whichCtar = kDSPI_Ctar0;
|
|
* slaveConfig->ctarConfig.bitsPerFrame = 8;
|
|
* slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
|
|
* slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
|
|
* slaveConfig->enableContinuousSCK = false;
|
|
* slaveConfig->enableRxFifoOverWrite = false;
|
|
* slaveConfig->enableModifiedTimingFormat = false;
|
|
* slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
|
|
* DSPI_SlaveInit(base, &slaveConfig);
|
|
* endcode
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param slaveConfig Pointer to the structure dspi_master_config_t.
|
|
*/
|
|
void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
|
|
{
|
|
assert(NULL != slaveConfig);
|
|
|
|
uint32_t temp = 0;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* enable DSPI clock */
|
|
CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
DSPI_Enable(base, true);
|
|
DSPI_StopTransfer(base);
|
|
|
|
DSPI_SetMasterSlaveMode(base, kDSPI_Slave);
|
|
|
|
temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
|
|
SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
|
|
|
|
base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
|
|
SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
|
|
SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
|
|
SPI_MCR_DIS_TXF(0U) | SPI_MCR_DIS_RXF(0U);
|
|
|
|
DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);
|
|
|
|
temp = base->CTAR[slaveConfig->whichCtar] &
|
|
~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
|
|
|
|
base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1U) |
|
|
SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
|
|
SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
|
|
|
|
DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
|
|
|
|
DSPI_StartTransfer(base);
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the dspi_slave_config_t structure to a default value.
|
|
*
|
|
* The purpose of this API is to get the configuration structure initialized for the DSPI_SlaveInit().
|
|
* Users may use the initialized structure unchanged in the DSPI_SlaveInit() or modify the structure
|
|
* before calling the DSPI_SlaveInit().
|
|
* This is an example.
|
|
* code
|
|
* dspi_slave_config_t slaveConfig;
|
|
* DSPI_SlaveGetDefaultConfig(&slaveConfig);
|
|
* endcode
|
|
* param slaveConfig Pointer to the dspi_slave_config_t structure.
|
|
*/
|
|
void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
|
|
{
|
|
assert(NULL != slaveConfig);
|
|
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(slaveConfig, 0, sizeof(*slaveConfig));
|
|
|
|
slaveConfig->whichCtar = kDSPI_Ctar0;
|
|
slaveConfig->ctarConfig.bitsPerFrame = 8;
|
|
slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
|
|
slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
|
|
|
|
slaveConfig->enableContinuousSCK = false;
|
|
slaveConfig->enableRxFifoOverWrite = false;
|
|
slaveConfig->enableModifiedTimingFormat = false;
|
|
slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
|
|
}
|
|
|
|
/*!
|
|
* brief De-initializes the DSPI peripheral. Call this API to disable the DSPI clock.
|
|
* param base DSPI peripheral address.
|
|
*/
|
|
void DSPI_Deinit(SPI_Type *base)
|
|
{
|
|
DSPI_StopTransfer(base);
|
|
DSPI_Enable(base, false);
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* disable DSPI clock */
|
|
CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh)
|
|
{
|
|
uint32_t temp;
|
|
|
|
temp = base->MCR;
|
|
|
|
if (activeLowOrHigh == kDSPI_PcsActiveLow)
|
|
{
|
|
temp |= SPI_MCR_PCSIS(pcs);
|
|
}
|
|
else
|
|
{
|
|
temp &= ~SPI_MCR_PCSIS(pcs);
|
|
}
|
|
|
|
base->MCR = temp;
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the DSPI baud rate in bits per second.
|
|
*
|
|
* This function takes in the desired baudRate_Bps (baud rate) and calculates the nearest possible baud rate without
|
|
* exceeding the desired baud rate, and returns the calculated baud rate in bits-per-second. It requires that the
|
|
* caller also provide the frequency of the module source clock (in Hertz).
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of the type dspi_ctar_selection_t
|
|
* param baudRate_Bps The desired baud rate in bits per second
|
|
* param srcClock_Hz Module source input clock in Hertz
|
|
* return The actual calculated baud rate
|
|
*/
|
|
uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
|
|
dspi_ctar_selection_t whichCtar,
|
|
uint32_t baudRate_Bps,
|
|
uint32_t srcClock_Hz)
|
|
{
|
|
/* for master mode configuration, if slave mode detected, return 0*/
|
|
if (!DSPI_IsMaster(base))
|
|
{
|
|
return 0;
|
|
}
|
|
uint32_t temp;
|
|
uint32_t prescaler, bestPrescaler;
|
|
uint32_t scaler, bestScaler;
|
|
uint32_t dbr, bestDbr;
|
|
uint32_t realBaudrate, bestBaudrate;
|
|
uint32_t diff, min_diff;
|
|
uint32_t baudrate = baudRate_Bps;
|
|
|
|
/* find combination of prescaler and scaler resulting in baudrate closest to the requested value */
|
|
min_diff = 0xFFFFFFFFU;
|
|
bestPrescaler = 0;
|
|
bestScaler = 0;
|
|
bestDbr = 1;
|
|
bestBaudrate = 0; /* required to avoid compilation warning */
|
|
|
|
/* In all for loops, if min_diff = 0, the exit for loop*/
|
|
for (prescaler = 0U; (prescaler < 4U) && (0U != min_diff); prescaler++)
|
|
{
|
|
for (scaler = 0U; (scaler < 16U) && (0U != min_diff); scaler++)
|
|
{
|
|
for (dbr = 1U; (dbr < 3U) && (0U != min_diff); dbr++)
|
|
{
|
|
realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));
|
|
|
|
/* calculate the baud rate difference based on the conditional statement that states that the calculated
|
|
* baud rate must not exceed the desired baud rate.
|
|
*/
|
|
if (baudrate >= realBaudrate)
|
|
{
|
|
diff = baudrate - realBaudrate;
|
|
if (min_diff > diff)
|
|
{
|
|
/* a better match found */
|
|
min_diff = diff;
|
|
bestPrescaler = prescaler;
|
|
bestScaler = scaler;
|
|
bestBaudrate = realBaudrate;
|
|
bestDbr = dbr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* write the best dbr, prescalar, and baud rate scalar to the CTAR */
|
|
temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK);
|
|
|
|
base->CTAR[whichCtar] = temp | ((bestDbr - 1U) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) |
|
|
(bestScaler << SPI_CTAR_BR_SHIFT);
|
|
|
|
/* return the actual calculated baud rate */
|
|
return bestBaudrate;
|
|
}
|
|
|
|
/*!
|
|
* brief Manually configures the delay prescaler and scaler for a particular CTAR.
|
|
*
|
|
* This function configures the PCS to SCK delay pre-scalar (PcsSCK) and scalar (CSSCK), after SCK delay pre-scalar
|
|
* (PASC) and scalar (ASC), and the delay after transfer pre-scalar (PDT) and scalar (DT).
|
|
*
|
|
* These delay names are available in the type dspi_delay_type_t.
|
|
*
|
|
* The user passes the delay to the configuration along with the prescaler and scaler value.
|
|
* This allows the user to directly set the prescaler/scaler values if pre-calculated or
|
|
* to manually increment either value.
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.
|
|
* param prescaler The prescaler delay value (can be an integer 0, 1, 2, or 3).
|
|
* param scaler The scaler delay value (can be any integer between 0 to 15).
|
|
* param whichDelay The desired delay to configure; must be of type dspi_delay_type_t
|
|
*/
|
|
void DSPI_MasterSetDelayScaler(
|
|
SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)
|
|
{
|
|
/* these settings are only relevant in master mode */
|
|
if (DSPI_IsMaster(base))
|
|
{
|
|
switch (whichDelay)
|
|
{
|
|
case kDSPI_PcsToSck:
|
|
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
|
|
SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler);
|
|
break;
|
|
case kDSPI_LastSckToPcs:
|
|
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
|
|
SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler);
|
|
break;
|
|
case kDSPI_BetweenTransfer:
|
|
base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
|
|
SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler);
|
|
break;
|
|
default:
|
|
/* All cases have been listed above, the default clause should not be reached. */
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Calculates the delay prescaler and scaler based on the desired delay input in nanoseconds.
|
|
*
|
|
* This function calculates the values for the following.
|
|
* PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK), or
|
|
* After SCK delay pre-scalar (PASC) and scalar (ASC), or
|
|
* Delay after transfer pre-scalar (PDT) and scalar (DT).
|
|
*
|
|
* These delay names are available in the type dspi_delay_type_t.
|
|
*
|
|
* The user passes which delay to configure along with the desired delay value in nanoseconds. The function
|
|
* calculates the values needed for the prescaler and scaler. Note that returning the calculated delay as an exact
|
|
* delay match may not be possible. In this case, the closest match is calculated without going below the desired
|
|
* delay value input.
|
|
* It is possible to input a very large delay value that exceeds the capability of the part, in which case the maximum
|
|
* supported delay is returned. The higher-level peripheral driver alerts the user of an out of range delay
|
|
* input.
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.
|
|
* param whichDelay The desired delay to configure, must be of type dspi_delay_type_t
|
|
* param srcClock_Hz Module source input clock in Hertz
|
|
* param delayTimeInNanoSec The desired delay value in nanoseconds.
|
|
* return The actual calculated delay value.
|
|
*/
|
|
uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
|
|
dspi_ctar_selection_t whichCtar,
|
|
dspi_delay_type_t whichDelay,
|
|
uint32_t srcClock_Hz,
|
|
uint32_t delayTimeInNanoSec)
|
|
{
|
|
/* for master mode configuration, if slave mode detected, return 0 */
|
|
if (!DSPI_IsMaster(base))
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint32_t prescaler, bestPrescaler;
|
|
uint32_t scaler, bestScaler;
|
|
uint32_t realDelay, bestDelay;
|
|
uint32_t diff, min_diff;
|
|
uint32_t initialDelayNanoSec;
|
|
|
|
/* find combination of prescaler and scaler resulting in the delay closest to the
|
|
* requested value
|
|
*/
|
|
min_diff = 0xFFFFFFFFU;
|
|
/* Initialize prescaler and scaler to their max values to generate the max delay */
|
|
bestPrescaler = 0x3;
|
|
bestScaler = 0xF;
|
|
bestDelay = (((1000000000U * 4U) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4U;
|
|
|
|
/* First calculate the initial, default delay */
|
|
initialDelayNanoSec = 1000000000U / srcClock_Hz * 2U;
|
|
|
|
/* If the initial, default delay is already greater than the desired delay, then
|
|
* set the delays to their initial value (0) and return the delay. In other words,
|
|
* there is no way to decrease the delay value further.
|
|
*/
|
|
if (initialDelayNanoSec >= delayTimeInNanoSec)
|
|
{
|
|
DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
|
|
return initialDelayNanoSec;
|
|
}
|
|
|
|
/* In all for loops, if min_diff = 0, the exit for loop */
|
|
for (prescaler = 0; (prescaler < 4U) && (0U != min_diff); prescaler++)
|
|
{
|
|
for (scaler = 0; (scaler < 16U) && (0U != min_diff); scaler++)
|
|
{
|
|
realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4U;
|
|
|
|
/* calculate the delay difference based on the conditional statement
|
|
* that states that the calculated delay must not be less then the desired delay
|
|
*/
|
|
if (realDelay >= delayTimeInNanoSec)
|
|
{
|
|
diff = realDelay - delayTimeInNanoSec;
|
|
if (min_diff > diff)
|
|
{
|
|
/* a better match found */
|
|
min_diff = diff;
|
|
bestPrescaler = prescaler;
|
|
bestScaler = scaler;
|
|
bestDelay = realDelay;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* write the best dbr, prescalar, and baud rate scalar to the CTAR */
|
|
DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay);
|
|
|
|
/* return the actual calculated baud rate */
|
|
return bestDelay;
|
|
}
|
|
|
|
/*!
|
|
* brief Sets the dspi_command_data_config_t structure to default values.
|
|
*
|
|
* The purpose of this API is to get the configuration structure initialized for use in the DSPI_MasterWrite_xx().
|
|
* Users may use the initialized structure unchanged in the DSPI_MasterWrite_xx() or modify the structure
|
|
* before calling the DSPI_MasterWrite_xx().
|
|
* This is an example.
|
|
* code
|
|
* dspi_command_data_config_t command;
|
|
* DSPI_GetDefaultDataCommandConfig(&command);
|
|
* endcode
|
|
* param command Pointer to the dspi_command_data_config_t structure.
|
|
*/
|
|
void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
|
|
{
|
|
assert(NULL != command);
|
|
|
|
/* Initializes the configure structure to zero. */
|
|
(void)memset(command, 0, sizeof(*command));
|
|
|
|
command->isPcsContinuous = false;
|
|
command->whichCtar = kDSPI_Ctar0;
|
|
command->whichPcs = kDSPI_Pcs0;
|
|
command->isEndOfQueue = false;
|
|
command->clearTransferCount = false;
|
|
}
|
|
|
|
/*!
|
|
* brief Writes data into the data buffer master mode and waits till complete to return.
|
|
*
|
|
* In master mode, the 16-bit data is appended to the 16-bit command info. The command portion
|
|
* provides characteristics of the data, such as the optional continuous chip select
|
|
* operation between transfers, the desired Clock and Transfer Attributes register to use for the
|
|
* associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
|
|
* transfer is the last in the queue, and whether to clear the transfer count (normally needed when
|
|
* sending the first frame of a data packet). This is an example.
|
|
* code
|
|
* dspi_command_config_t commandConfig;
|
|
* commandConfig.isPcsContinuous = true;
|
|
* commandConfig.whichCtar = kDSPICtar0;
|
|
* commandConfig.whichPcs = kDSPIPcs1;
|
|
* commandConfig.clearTransferCount = false;
|
|
* commandConfig.isEndOfQueue = false;
|
|
* DSPI_MasterWriteDataBlocking(base, &commandConfig, dataWord);
|
|
* endcode
|
|
*
|
|
* Note that this function does not return until after the transmit is complete. Also note that the DSPI must be
|
|
* enabled and running to transmit data (MCR[MDIS] & [HALT] = 0). Because the SPI is a synchronous protocol,
|
|
* the received data is available when the transmit completes.
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param command Pointer to the command structure.
|
|
* param data The data word to be sent.
|
|
*/
|
|
void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)
|
|
{
|
|
assert(NULL != command);
|
|
|
|
/* First, clear Transmit Complete Flag (TCF) */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
|
|
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) |
|
|
SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) |
|
|
SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data);
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
/* Wait till TCF sets */
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
|
|
{
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Writes a 32-bit data word (16-bit command appended with 16-bit data) into the data
|
|
* buffer master mode and waits till complete to return.
|
|
*
|
|
* In this function, the user must append the 16-bit data to the 16-bit command information and then provide the total
|
|
* 32-bit word
|
|
* as the data to send.
|
|
* The command portion provides characteristics of the data, such as the optional continuous chip select operation
|
|
* between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the
|
|
* desired PCS
|
|
* signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the
|
|
* transfer count (normally needed when sending the first frame of a data packet). The user is responsible for
|
|
* appending this command with the data to send. This is an example:
|
|
* code
|
|
* dataWord = <16-bit command> | <16-bit data>;
|
|
* DSPI_MasterWriteCommandDataBlocking(base, dataWord);
|
|
* endcode
|
|
*
|
|
* Note that this function does not return until after the transmit is complete. Also note that the DSPI must be
|
|
* enabled and running to transmit data (MCR[MDIS] & [HALT] = 0).
|
|
* Because the SPI is a synchronous protocol, the received data is available when the transmit completes.
|
|
*
|
|
* For a blocking polling transfer, see methods below.
|
|
* Option 1:
|
|
* uint32_t command_to_send = DSPI_MasterGetFormattedCommand(&command);
|
|
* uint32_t data0 = command_to_send | data_need_to_send_0;
|
|
* uint32_t data1 = command_to_send | data_need_to_send_1;
|
|
* uint32_t data2 = command_to_send | data_need_to_send_2;
|
|
*
|
|
* DSPI_MasterWriteCommandDataBlocking(base,data0);
|
|
* DSPI_MasterWriteCommandDataBlocking(base,data1);
|
|
* DSPI_MasterWriteCommandDataBlocking(base,data2);
|
|
*
|
|
* Option 2:
|
|
* DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_0);
|
|
* DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_1);
|
|
* DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_2);
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param data The data word (command and data combined) to be sent.
|
|
*/
|
|
void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
|
|
{
|
|
/* First, clear Transmit Complete Flag (TCF) */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
|
|
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
base->PUSHR = data;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
/* Wait till TCF sets */
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
|
|
{
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Writes data into the data buffer in slave mode, waits till data was transmitted, and returns.
|
|
*
|
|
* In slave mode, up to 16-bit words may be written. The function first clears the transmit complete flag, writes data
|
|
* into data register, and finally waits until the data is transmitted.
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param data The data to send.
|
|
*/
|
|
void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
|
|
{
|
|
/* First, clear Transmit Complete Flag (TCF) */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
|
|
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
base->PUSHR_SLAVE = data;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
/* Wait till TCF sets */
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
|
|
{
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief Enables the DSPI interrupts.
|
|
*
|
|
* This function configures the various interrupt masks of the DSPI. The parameters are a base and an interrupt mask.
|
|
* Note, for Tx Fill and Rx FIFO drain requests, enable the interrupt request and disable the DMA request.
|
|
* Do not use this API(write to RSER register) while DSPI is in running state.
|
|
*
|
|
* code
|
|
* DSPI_EnableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable );
|
|
* endcode
|
|
*
|
|
* param base DSPI peripheral address.
|
|
* param mask The interrupt mask; use the enum _dspi_interrupt_enable.
|
|
*/
|
|
void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
|
|
{
|
|
if (0U != (mask & SPI_RSER_TFFF_RE_MASK))
|
|
{
|
|
base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
|
|
}
|
|
if (0U != (mask & SPI_RSER_RFDF_RE_MASK))
|
|
{
|
|
base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
|
|
}
|
|
base->RSER |= mask;
|
|
}
|
|
|
|
/*Transactional APIs -- Master*/
|
|
|
|
/*!
|
|
* brief Initializes the DSPI master handle.
|
|
*
|
|
* This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a
|
|
* specified DSPI instance, call this API once to get the initialized handle.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle DSPI handle pointer to dspi_master_handle_t.
|
|
* param callback DSPI callback.
|
|
* param userData Callback function parameter.
|
|
*/
|
|
void DSPI_MasterTransferCreateHandle(SPI_Type *base,
|
|
dspi_master_handle_t *handle,
|
|
dspi_master_transfer_callback_t callback,
|
|
void *userData)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Zero the handle. */
|
|
(void)memset(handle, 0, sizeof(*handle));
|
|
|
|
g_dspiHandle[DSPI_GetInstance(base)] = handle;
|
|
|
|
handle->callback = callback;
|
|
handle->userData = userData;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI master transfer data using polling.
|
|
*
|
|
* This function transfers data using polling. This is a blocking function, which does not return until all transfers
|
|
* have been completed.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param transfer Pointer to the dspi_transfer_t structure.
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
|
|
{
|
|
assert(NULL != transfer);
|
|
|
|
uint16_t wordToSend = 0;
|
|
uint16_t wordReceived = 0;
|
|
uint8_t dummyData = DSPI_GetDummyDataInstance(base);
|
|
uint8_t bitsPerFrame;
|
|
|
|
uint32_t command;
|
|
uint32_t lastCommand;
|
|
|
|
uint8_t *txData;
|
|
uint8_t *rxData;
|
|
uint32_t remainingSendByteCount;
|
|
uint32_t remainingReceiveByteCount;
|
|
|
|
uint32_t fifoSize;
|
|
uint32_t tmpMCR = 0;
|
|
dspi_command_data_config_t commandStruct;
|
|
|
|
/* If the transfer count is zero, then return immediately.*/
|
|
if (transfer->dataSize == 0U)
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
DSPI_StopTransfer(base);
|
|
DSPI_DisableInterrupts(base, (uint32_t)kDSPI_AllInterruptEnable);
|
|
DSPI_FlushFifo(base, true, true);
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
|
|
|
|
/*Calculate the command and lastCommand*/
|
|
commandStruct.whichPcs =
|
|
(dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
|
|
commandStruct.isEndOfQueue = false;
|
|
commandStruct.clearTransferCount = false;
|
|
commandStruct.whichCtar =
|
|
(dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
|
|
commandStruct.isPcsContinuous =
|
|
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
|
|
|
|
command = DSPI_MasterGetFormattedCommand(&(commandStruct));
|
|
|
|
commandStruct.isEndOfQueue = true;
|
|
commandStruct.isPcsContinuous =
|
|
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
|
|
lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
|
|
|
|
/*Calculate the bitsPerFrame*/
|
|
bitsPerFrame = (uint8_t)(((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U);
|
|
|
|
txData = transfer->txData;
|
|
rxData = transfer->rxData;
|
|
remainingSendByteCount = transfer->dataSize;
|
|
remainingReceiveByteCount = transfer->dataSize;
|
|
|
|
tmpMCR = base->MCR;
|
|
if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
|
|
{
|
|
fifoSize = 1U;
|
|
}
|
|
else
|
|
{
|
|
fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
|
|
}
|
|
|
|
DSPI_StartTransfer(base);
|
|
|
|
if (bitsPerFrame <= 8U)
|
|
{
|
|
while (remainingSendByteCount > 0U)
|
|
{
|
|
if (remainingSendByteCount == 1U)
|
|
{
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
if (txData != NULL)
|
|
{
|
|
base->PUSHR = (*txData) | (lastCommand);
|
|
txData++;
|
|
}
|
|
else
|
|
{
|
|
base->PUSHR = (lastCommand) | (dummyData);
|
|
}
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
remainingSendByteCount--;
|
|
|
|
while (remainingReceiveByteCount > 0U)
|
|
{
|
|
if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
if (rxData != NULL)
|
|
{
|
|
/* Read data from POPR*/
|
|
*(rxData) = (uint8_t)DSPI_ReadData(base);
|
|
rxData++;
|
|
}
|
|
else
|
|
{
|
|
(void)DSPI_ReadData(base);
|
|
}
|
|
remainingReceiveByteCount--;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Wait until Tx Fifo is not full*/
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
if (txData != NULL)
|
|
{
|
|
base->PUSHR = command | (uint16_t)(*txData);
|
|
txData++;
|
|
}
|
|
else
|
|
{
|
|
base->PUSHR = command | dummyData;
|
|
}
|
|
remainingSendByteCount--;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize)
|
|
{
|
|
if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
if (rxData != NULL)
|
|
{
|
|
*(rxData) = (uint8_t)DSPI_ReadData(base);
|
|
rxData++;
|
|
}
|
|
else
|
|
{
|
|
(void)DSPI_ReadData(base);
|
|
}
|
|
remainingReceiveByteCount--;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (remainingSendByteCount > 0U)
|
|
{
|
|
if (remainingSendByteCount <= 2U)
|
|
{
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
if (txData != NULL)
|
|
{
|
|
wordToSend = *(txData);
|
|
++txData;
|
|
|
|
if (remainingSendByteCount > 1U)
|
|
{
|
|
wordToSend |= (uint16_t)(*(txData)) << 8U;
|
|
++txData;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
wordToSend = dummyData;
|
|
}
|
|
|
|
base->PUSHR = lastCommand | wordToSend;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
remainingSendByteCount = 0;
|
|
|
|
while (remainingReceiveByteCount > 0U)
|
|
{
|
|
if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
wordReceived = (uint16_t)DSPI_ReadData(base);
|
|
|
|
if (remainingReceiveByteCount != 1U)
|
|
{
|
|
if (rxData != NULL)
|
|
{
|
|
*(rxData) = (uint8_t)wordReceived;
|
|
++rxData;
|
|
*(rxData) = (uint8_t)(wordReceived >> 8U);
|
|
++rxData;
|
|
}
|
|
remainingReceiveByteCount -= 2U;
|
|
}
|
|
else
|
|
{
|
|
if (rxData != NULL)
|
|
{
|
|
*(rxData) = (uint8_t)wordReceived;
|
|
++rxData;
|
|
}
|
|
remainingReceiveByteCount--;
|
|
}
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Wait until Tx Fifo is not full*/
|
|
while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
|
|
if (txData != NULL)
|
|
{
|
|
wordToSend = *(txData);
|
|
++txData;
|
|
wordToSend |= (uint16_t)(*(txData)) << 8U;
|
|
++txData;
|
|
}
|
|
else
|
|
{
|
|
wordToSend = dummyData;
|
|
}
|
|
base->PUSHR = command | wordToSend;
|
|
remainingSendByteCount -= 2U;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
while (((remainingReceiveByteCount - remainingSendByteCount) / 2U) >= fifoSize)
|
|
{
|
|
if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
wordReceived = (uint16_t)DSPI_ReadData(base);
|
|
|
|
if (rxData != NULL)
|
|
{
|
|
*rxData = (uint8_t)wordReceived;
|
|
++rxData;
|
|
*rxData = (uint8_t)(wordReceived >> 8U);
|
|
++rxData;
|
|
}
|
|
remainingReceiveByteCount -= 2U;
|
|
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != transfer);
|
|
|
|
uint32_t tmpMCR = 0;
|
|
dspi_command_data_config_t commandStruct = {false, kDSPI_Ctar0, kDSPI_Pcs0, false, false};
|
|
|
|
DSPI_StopTransfer(base);
|
|
DSPI_FlushFifo(base, true, true);
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
|
|
|
|
commandStruct.whichPcs =
|
|
(dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
|
|
commandStruct.isEndOfQueue = false;
|
|
commandStruct.clearTransferCount = false;
|
|
commandStruct.whichCtar =
|
|
(dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
|
|
commandStruct.isPcsContinuous =
|
|
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
|
|
handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
|
|
|
|
commandStruct.isEndOfQueue = true;
|
|
commandStruct.isPcsContinuous =
|
|
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
|
|
handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
|
|
|
|
handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U;
|
|
|
|
tmpMCR = base->MCR;
|
|
if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
|
|
{
|
|
handle->fifoSize = 1;
|
|
}
|
|
else
|
|
{
|
|
handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
|
|
}
|
|
handle->txData = transfer->txData;
|
|
handle->rxData = transfer->rxData;
|
|
handle->remainingSendByteCount = transfer->dataSize;
|
|
handle->remainingReceiveByteCount = transfer->dataSize;
|
|
handle->totalByteCount = transfer->dataSize;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI master transfer data using interrupts.
|
|
*
|
|
* This function transfers data using interrupts. This is a non-blocking function, which returns right away. When all
|
|
* data is transferred, the callback function is called.
|
|
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
|
|
* param transfer Pointer to the dspi_transfer_t structure.
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != transfer);
|
|
|
|
/* If the transfer count is zero, then return immediately.*/
|
|
if (transfer->dataSize == 0U)
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Check that we're not busy.*/
|
|
if (handle->state == (uint8_t)kDSPI_Busy)
|
|
{
|
|
return kStatus_DSPI_Busy;
|
|
}
|
|
|
|
handle->state = (uint8_t)kDSPI_Busy;
|
|
|
|
/* Disable the NVIC for DSPI peripheral. */
|
|
(void)DisableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
|
|
|
|
DSPI_MasterTransferPrepare(base, handle, transfer);
|
|
|
|
/* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
|
|
* Since SPI is a synchronous interface, we only need to enable the RX interrupt.
|
|
* The IRQ handler will get the status of RX and TX interrupt flags.
|
|
*/
|
|
s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
|
|
|
|
DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable);
|
|
DSPI_StartTransfer(base);
|
|
|
|
/* Fill up the Tx FIFO to trigger the transfer. */
|
|
DSPI_MasterTransferFillUpTxFifo(base, handle);
|
|
|
|
/* Enable the NVIC for DSPI peripheral. */
|
|
(void)EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
/*!
|
|
* brief Transfers a block of data using a polling method.
|
|
*
|
|
* This function will do a half-duplex transfer for DSPI master, This is a blocking function,
|
|
* which does not retuen until all transfer have been completed. And data transfer will be half-duplex,
|
|
* users can set transmit first or receive first.
|
|
*
|
|
* param base DSPI base pointer
|
|
* param xfer pointer to dspi_half_duplex_transfer_t structure
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_MasterHalfDuplexTransferBlocking(SPI_Type *base, dspi_half_duplex_transfer_t *xfer)
|
|
{
|
|
assert(NULL != xfer);
|
|
|
|
dspi_transfer_t tempXfer = {0};
|
|
status_t status;
|
|
|
|
if (true == xfer->isTransmitFirst)
|
|
{
|
|
tempXfer.txData = xfer->txData;
|
|
tempXfer.rxData = NULL;
|
|
tempXfer.dataSize = xfer->txDataSize;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.txData = NULL;
|
|
tempXfer.rxData = xfer->rxData;
|
|
tempXfer.dataSize = xfer->rxDataSize;
|
|
}
|
|
/* If the pcs pin keep assert between transmit and receive. */
|
|
if (true == xfer->isPcsAssertInTransfer)
|
|
{
|
|
tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer);
|
|
}
|
|
|
|
status = DSPI_MasterTransferBlocking(base, &tempXfer);
|
|
if (status != kStatus_Success)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
if (true == xfer->isTransmitFirst)
|
|
{
|
|
tempXfer.txData = NULL;
|
|
tempXfer.rxData = xfer->rxData;
|
|
tempXfer.dataSize = xfer->rxDataSize;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.txData = xfer->txData;
|
|
tempXfer.rxData = NULL;
|
|
tempXfer.dataSize = xfer->txDataSize;
|
|
}
|
|
tempXfer.configFlags = xfer->configFlags;
|
|
|
|
/* DSPI transfer blocking. */
|
|
status = DSPI_MasterTransferBlocking(base, &tempXfer);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Performs a non-blocking DSPI interrupt transfer.
|
|
*
|
|
* This function transfers data using interrupts, the transfer mechanism is half-duplex. This is a non-blocking
|
|
* function,
|
|
* which returns right away. When all data is transferred, the callback function is called.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle pointer to dspi_master_handle_t structure which stores the transfer state
|
|
* param xfer pointer to dspi_half_duplex_transfer_t structure
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_MasterHalfDuplexTransferNonBlocking(SPI_Type *base,
|
|
dspi_master_handle_t *handle,
|
|
dspi_half_duplex_transfer_t *xfer)
|
|
{
|
|
assert(NULL != xfer);
|
|
assert(NULL != handle);
|
|
dspi_transfer_t tempXfer = {0};
|
|
status_t status;
|
|
|
|
if (true == xfer->isTransmitFirst)
|
|
{
|
|
tempXfer.txData = xfer->txData;
|
|
tempXfer.rxData = NULL;
|
|
tempXfer.dataSize = xfer->txDataSize;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.txData = NULL;
|
|
tempXfer.rxData = xfer->rxData;
|
|
tempXfer.dataSize = xfer->rxDataSize;
|
|
}
|
|
/* If the pcs pin keep assert between transmit and receive. */
|
|
if (true == xfer->isPcsAssertInTransfer)
|
|
{
|
|
tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer);
|
|
}
|
|
|
|
status = DSPI_MasterTransferBlocking(base, &tempXfer);
|
|
if (status != kStatus_Success)
|
|
{
|
|
return status;
|
|
}
|
|
|
|
if (true == xfer->isTransmitFirst)
|
|
{
|
|
tempXfer.txData = NULL;
|
|
tempXfer.rxData = xfer->rxData;
|
|
tempXfer.dataSize = xfer->rxDataSize;
|
|
}
|
|
else
|
|
{
|
|
tempXfer.txData = xfer->txData;
|
|
tempXfer.rxData = NULL;
|
|
tempXfer.dataSize = xfer->txDataSize;
|
|
}
|
|
tempXfer.configFlags = xfer->configFlags;
|
|
|
|
status = DSPI_MasterTransferNonBlocking(base, handle, &tempXfer);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the master transfer count.
|
|
*
|
|
* This function gets the master transfer count.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
|
|
* param count The number of bytes transferred by using the non-blocking transaction.
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
if (NULL == count)
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Catch when there is not an active transfer. */
|
|
if (handle->state != (uint8_t)kDSPI_Busy)
|
|
{
|
|
*count = 0;
|
|
return kStatus_NoTransferInProgress;
|
|
}
|
|
|
|
*count = handle->totalByteCount - handle->remainingReceiveByteCount;
|
|
return kStatus_Success;
|
|
}
|
|
|
|
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Disable interrupt requests*/
|
|
DSPI_DisableInterrupts(
|
|
base, ((uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable));
|
|
|
|
status_t status = 0;
|
|
if (handle->state == (uint8_t)kDSPI_Error)
|
|
{
|
|
status = kStatus_DSPI_Error;
|
|
}
|
|
else
|
|
{
|
|
status = kStatus_Success;
|
|
}
|
|
|
|
if ((NULL != handle->callback) && ((uint8_t)kDSPI_Idle != handle->state))
|
|
{
|
|
handle->state = (uint8_t)kDSPI_Idle;
|
|
handle->callback(base, handle, status, handle->userData);
|
|
}
|
|
}
|
|
|
|
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
uint16_t wordToSend = 0;
|
|
uint8_t dummyData = DSPI_GetDummyDataInstance(base);
|
|
size_t tmpRemainingSendByteCount = handle->remainingSendByteCount;
|
|
size_t tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
|
|
uint8_t tmpFifoSize = handle->fifoSize;
|
|
|
|
/* If bits/frame is greater than one byte */
|
|
if (handle->bitsPerFrame > 8U)
|
|
{
|
|
/* Fill the fifo until it is full or until the send word count is 0 or until the difference
|
|
* between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
|
|
* The reason for checking the difference is to ensure we only send as much as the
|
|
* RX FIFO can receive.
|
|
* For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the
|
|
* send data, hence the difference between the remainingReceiveByteCount and
|
|
* remainingSendByteCount must be divided by 2 to convert this difference into a
|
|
* 16-bit (2 byte) value.
|
|
*/
|
|
while ((0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) &&
|
|
(((tmpRemainingReceiveByteCount - tmpRemainingSendByteCount) / 2U) < tmpFifoSize))
|
|
{
|
|
if (handle->remainingSendByteCount <= 2U)
|
|
{
|
|
if (NULL != handle->txData)
|
|
{
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
wordToSend = *(handle->txData);
|
|
}
|
|
else
|
|
{
|
|
wordToSend = *(handle->txData);
|
|
++handle->txData; /* increment to next data byte */
|
|
wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
wordToSend = dummyData;
|
|
}
|
|
handle->remainingSendByteCount = 0;
|
|
base->PUSHR = handle->lastCommand | wordToSend;
|
|
}
|
|
/* For all words except the last word */
|
|
else
|
|
{
|
|
if (NULL != handle->txData)
|
|
{
|
|
wordToSend = *(handle->txData);
|
|
++handle->txData; /* increment to next data byte */
|
|
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
|
|
++handle->txData; /* increment to next data byte */
|
|
}
|
|
else
|
|
{
|
|
wordToSend = dummyData;
|
|
}
|
|
handle->remainingSendByteCount -= 2U; /* decrement remainingSendByteCount by 2 */
|
|
base->PUSHR = handle->command | wordToSend;
|
|
}
|
|
|
|
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
/* exit loop if send count is zero, else update local variables for next loop.
|
|
* If this is the first time write to the PUSHR, write only once.
|
|
*/
|
|
tmpRemainingSendByteCount = handle->remainingSendByteCount;
|
|
if ((tmpRemainingSendByteCount == 0U) || (tmpRemainingSendByteCount == handle->totalByteCount - 2U))
|
|
{
|
|
break;
|
|
}
|
|
tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
|
|
tmpRemainingSendByteCount = handle->remainingSendByteCount;
|
|
tmpFifoSize = handle->fifoSize;
|
|
} /* End of TX FIFO fill while loop */
|
|
}
|
|
/* Optimized for bits/frame less than or equal to one byte. */
|
|
else
|
|
{
|
|
/* Fill the fifo until it is full or until the send word count is 0 or until the difference
|
|
* between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
|
|
* The reason for checking the difference is to ensure we only send as much as the
|
|
* RX FIFO can receive.
|
|
*/
|
|
while ((0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) &&
|
|
((tmpRemainingReceiveByteCount - tmpRemainingSendByteCount) < tmpFifoSize))
|
|
{
|
|
if (NULL != handle->txData)
|
|
{
|
|
wordToSend = *(handle->txData);
|
|
++handle->txData;
|
|
}
|
|
else
|
|
{
|
|
wordToSend = dummyData;
|
|
}
|
|
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
base->PUSHR = handle->lastCommand | wordToSend;
|
|
}
|
|
else
|
|
{
|
|
base->PUSHR = handle->command | wordToSend;
|
|
}
|
|
|
|
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
--handle->remainingSendByteCount;
|
|
|
|
/* exit loop if send count is zero, else update local variables for next loop
|
|
* If this is the first time write to the PUSHR, write only once.
|
|
*/
|
|
tmpRemainingSendByteCount = handle->remainingSendByteCount;
|
|
if ((tmpRemainingSendByteCount == 0U) || (tmpRemainingSendByteCount == (handle->totalByteCount - 1U)))
|
|
{
|
|
break;
|
|
}
|
|
tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
|
|
tmpRemainingSendByteCount = handle->remainingSendByteCount;
|
|
tmpFifoSize = handle->fifoSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI master aborts a transfer using an interrupt.
|
|
*
|
|
* This function aborts a transfer using an interrupt.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
|
|
*/
|
|
void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
DSPI_StopTransfer(base);
|
|
|
|
/* Disable interrupt requests*/
|
|
DSPI_DisableInterrupts(
|
|
base, ((uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable));
|
|
|
|
handle->state = (uint8_t)kDSPI_Idle;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI Master IRQ handler function.
|
|
*
|
|
* This function processes the DSPI transmit and receive IRQ.
|
|
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
|
|
*/
|
|
void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */
|
|
if (0U != (handle->remainingReceiveByteCount))
|
|
{
|
|
/* Check read buffer.*/
|
|
uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */
|
|
|
|
/* If bits/frame is greater than one byte */
|
|
if (handle->bitsPerFrame > 8U)
|
|
{
|
|
while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
wordReceived = (uint16_t)DSPI_ReadData(base);
|
|
/* clear the rx fifo drain request, needed for non-DMA applications as this flag
|
|
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
|
|
* either remain clear if no more data is in the fifo, or it will set if there is
|
|
* more data in the fifo.
|
|
*/
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
|
|
/* Store read bytes into rx buffer only if a buffer pointer was provided */
|
|
if (NULL != handle->rxData)
|
|
{
|
|
/* For the last word received, if there is an extra byte due to the odd transfer
|
|
* byte count, only save the last byte and discard the upper byte
|
|
*/
|
|
if (handle->remainingReceiveByteCount == 1U)
|
|
{
|
|
*handle->rxData = (uint8_t)wordReceived; /* Write first data byte */
|
|
--handle->remainingReceiveByteCount;
|
|
}
|
|
else
|
|
{
|
|
*handle->rxData = (uint8_t)wordReceived; /* Write first data byte */
|
|
++handle->rxData; /* increment to next data byte */
|
|
*handle->rxData = (uint8_t)(wordReceived >> 8U); /* Write second data byte */
|
|
++handle->rxData; /* increment to next data byte */
|
|
handle->remainingReceiveByteCount -= 2U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (handle->remainingReceiveByteCount == 1U)
|
|
{
|
|
--handle->remainingReceiveByteCount;
|
|
}
|
|
else
|
|
{
|
|
handle->remainingReceiveByteCount -= 2U;
|
|
}
|
|
}
|
|
if (handle->remainingReceiveByteCount == 0U)
|
|
{
|
|
break;
|
|
}
|
|
} /* End of RX FIFO drain while loop */
|
|
}
|
|
/* Optimized for bits/frame less than or equal to one byte. */
|
|
else
|
|
{
|
|
while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
wordReceived = (uint16_t)DSPI_ReadData(base);
|
|
/* clear the rx fifo drain request, needed for non-DMA applications as this flag
|
|
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
|
|
* either remain clear if no more data is in the fifo, or it will set if there is
|
|
* more data in the fifo.
|
|
*/
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
|
|
/* Store read bytes into rx buffer only if a buffer pointer was provided */
|
|
if (NULL != handle->rxData)
|
|
{
|
|
*handle->rxData = (uint8_t)wordReceived;
|
|
++handle->rxData;
|
|
}
|
|
|
|
--handle->remainingReceiveByteCount;
|
|
|
|
if (handle->remainingReceiveByteCount == 0U)
|
|
{
|
|
break;
|
|
}
|
|
} /* End of RX FIFO drain while loop */
|
|
}
|
|
}
|
|
|
|
/* Check write buffer. We always have to send a word in order to keep the transfer
|
|
* moving. So if the caller didn't provide a send buffer, we just send a zero.
|
|
*/
|
|
if (0U != (handle->remainingSendByteCount))
|
|
{
|
|
DSPI_MasterTransferFillUpTxFifo(base, handle);
|
|
}
|
|
|
|
/* Check if we're done with this transfer.*/
|
|
if (handle->remainingSendByteCount == 0U)
|
|
{
|
|
if (handle->remainingReceiveByteCount == 0U)
|
|
{
|
|
/* Complete the transfer and disable the interrupts */
|
|
DSPI_MasterTransferComplete(base, handle);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*Transactional APIs -- Slave*/
|
|
/*!
|
|
* brief Initializes the DSPI slave handle.
|
|
*
|
|
* This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a
|
|
* specified DSPI instance, call this API once to get the initialized handle.
|
|
*
|
|
* param handle DSPI handle pointer to the dspi_slave_handle_t.
|
|
* param base DSPI peripheral base address.
|
|
* param callback DSPI callback.
|
|
* param userData Callback function parameter.
|
|
*/
|
|
void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
|
|
dspi_slave_handle_t *handle,
|
|
dspi_slave_transfer_callback_t callback,
|
|
void *userData)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Zero the handle. */
|
|
(void)memset(handle, 0, sizeof(*handle));
|
|
|
|
g_dspiHandle[DSPI_GetInstance(base)] = handle;
|
|
|
|
handle->callback = callback;
|
|
handle->userData = userData;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI slave transfers data using an interrupt.
|
|
*
|
|
* This function transfers data using an interrupt. This is a non-blocking function, which returns right away. When all
|
|
* data is transferred, the callback function is called.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
|
|
* param transfer Pointer to the dspi_transfer_t structure.
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)
|
|
{
|
|
assert(NULL != handle);
|
|
assert(NULL != transfer);
|
|
|
|
/* If receive length is zero */
|
|
if (transfer->dataSize == 0U)
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* If both send buffer and receive buffer is null */
|
|
if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Check that we're not busy.*/
|
|
if (handle->state == (uint8_t)kDSPI_Busy)
|
|
{
|
|
return kStatus_DSPI_Busy;
|
|
}
|
|
handle->state = (uint8_t)kDSPI_Busy;
|
|
|
|
/* Enable the NVIC for DSPI peripheral. */
|
|
(void)EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
|
|
|
|
/* Store transfer information */
|
|
handle->txData = transfer->txData;
|
|
handle->rxData = transfer->rxData;
|
|
handle->remainingSendByteCount = transfer->dataSize;
|
|
handle->remainingReceiveByteCount = transfer->dataSize;
|
|
handle->totalByteCount = transfer->dataSize;
|
|
|
|
handle->errorCount = 0;
|
|
|
|
uint8_t whichCtar = (uint8_t)((transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT);
|
|
handle->bitsPerFrame =
|
|
(((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1U;
|
|
|
|
DSPI_StopTransfer(base);
|
|
|
|
DSPI_FlushFifo(base, true, true);
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
|
|
|
|
s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
|
|
|
|
/* Enable RX FIFO drain request, the slave only use this interrupt */
|
|
DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable);
|
|
|
|
if (NULL != handle->rxData)
|
|
{
|
|
/* RX FIFO overflow request enable */
|
|
DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoOverflowInterruptEnable);
|
|
}
|
|
if (NULL != handle->txData)
|
|
{
|
|
/* TX FIFO underflow request enable */
|
|
DSPI_EnableInterrupts(base, (uint32_t)kDSPI_TxFifoUnderflowInterruptEnable);
|
|
}
|
|
|
|
DSPI_StartTransfer(base);
|
|
|
|
/* Prepare data to transmit */
|
|
DSPI_SlaveTransferFillUpTxFifo(base, handle);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
/*!
|
|
* brief Gets the slave transfer count.
|
|
*
|
|
* This function gets the slave transfer count.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
|
|
* param count The number of bytes transferred by using the non-blocking transaction.
|
|
* return status of status_t.
|
|
*/
|
|
status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
if (NULL == count)
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Catch when there is not an active transfer. */
|
|
if (handle->state != (uint8_t)kDSPI_Busy)
|
|
{
|
|
*count = 0;
|
|
return kStatus_NoTransferInProgress;
|
|
}
|
|
|
|
*count = handle->totalByteCount - handle->remainingReceiveByteCount;
|
|
return kStatus_Success;
|
|
}
|
|
|
|
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
uint16_t transmitData = 0;
|
|
uint8_t dummyPattern = DSPI_GetDummyDataInstance(base);
|
|
|
|
/* Service the transmitter, if transmit buffer provided, transmit the data,
|
|
* else transmit dummy pattern
|
|
*/
|
|
while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
|
|
{
|
|
/* Transmit data */
|
|
if (handle->remainingSendByteCount > 0U)
|
|
{
|
|
/* Have data to transmit, update the transmit data and push to FIFO */
|
|
if (handle->bitsPerFrame <= 8U)
|
|
{
|
|
/* bits/frame is 1 byte */
|
|
if (NULL != handle->txData)
|
|
{
|
|
/* Update transmit data and transmit pointer */
|
|
transmitData = *handle->txData;
|
|
handle->txData++;
|
|
}
|
|
else
|
|
{
|
|
transmitData = dummyPattern;
|
|
}
|
|
|
|
/* Decrease remaining dataSize */
|
|
--handle->remainingSendByteCount;
|
|
}
|
|
/* bits/frame is 2 bytes */
|
|
else
|
|
{
|
|
/* With multibytes per frame transmission, the transmit frame contains data from
|
|
* transmit buffer until sent dataSize matches user request. Other bytes will set to
|
|
* dummy pattern value.
|
|
*/
|
|
if (NULL != handle->txData)
|
|
{
|
|
/* Update first byte of transmit data and transmit pointer */
|
|
transmitData = *handle->txData;
|
|
handle->txData++;
|
|
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
/* Decrease remaining dataSize */
|
|
--handle->remainingSendByteCount;
|
|
/* Update second byte of transmit data to second byte of dummy pattern */
|
|
transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8U);
|
|
}
|
|
else
|
|
{
|
|
/* Update second byte of transmit data and transmit pointer */
|
|
transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8U);
|
|
handle->txData++;
|
|
handle->remainingSendByteCount -= 2U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
--handle->remainingSendByteCount;
|
|
}
|
|
else
|
|
{
|
|
handle->remainingSendByteCount -= 2U;
|
|
}
|
|
transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8U) | dummyPattern;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Write the data to the DSPI data register */
|
|
base->PUSHR_SLAVE = transmitData;
|
|
|
|
/* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
}
|
|
}
|
|
|
|
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
/* Disable interrupt requests */
|
|
DSPI_DisableInterrupts(
|
|
base, ((uint32_t)kDSPI_TxFifoUnderflowInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable |
|
|
(uint32_t)kDSPI_RxFifoOverflowInterruptEnable | (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable));
|
|
|
|
/* The transfer is complete. */
|
|
handle->txData = NULL;
|
|
handle->rxData = NULL;
|
|
handle->remainingReceiveByteCount = 0;
|
|
handle->remainingSendByteCount = 0;
|
|
|
|
status_t status = 0;
|
|
if (handle->state == (uint8_t)kDSPI_Error)
|
|
{
|
|
status = kStatus_DSPI_Error;
|
|
}
|
|
else
|
|
{
|
|
status = kStatus_Success;
|
|
}
|
|
|
|
handle->state = (uint8_t)kDSPI_Idle;
|
|
|
|
if (NULL != handle->callback)
|
|
{
|
|
handle->callback(base, handle, status, handle->userData);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI slave aborts a transfer using an interrupt.
|
|
*
|
|
* This function aborts a transfer using an interrupt.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
|
|
*/
|
|
void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
DSPI_StopTransfer(base);
|
|
|
|
/* Disable interrupt requests */
|
|
DSPI_DisableInterrupts(
|
|
base, ((uint32_t)kDSPI_TxFifoUnderflowInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable |
|
|
(uint32_t)kDSPI_RxFifoOverflowInterruptEnable | (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable));
|
|
|
|
handle->state = (uint8_t)kDSPI_Idle;
|
|
handle->remainingSendByteCount = 0;
|
|
handle->remainingReceiveByteCount = 0;
|
|
}
|
|
|
|
/*!
|
|
* brief DSPI Master IRQ handler function.
|
|
*
|
|
* This function processes the DSPI transmit and receive IRQ.
|
|
*
|
|
* param base DSPI peripheral base address.
|
|
* param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
|
|
*/
|
|
void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
|
|
{
|
|
assert(NULL != handle);
|
|
|
|
uint8_t dummyPattern = DSPI_GetDummyDataInstance(base);
|
|
uint32_t dataReceived;
|
|
uint32_t dataSend = 0;
|
|
uint32_t tmpRemainingReceiveByteCount = 0;
|
|
|
|
/* Because SPI protocol is synchronous, the number of bytes that that slave received from the
|
|
* master is the actual number of bytes that the slave transmitted to the master. So we only
|
|
* monitor the received dataSize to know when the transfer is complete.
|
|
*/
|
|
if (handle->remainingReceiveByteCount > 0U)
|
|
{
|
|
while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
|
|
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
|
|
{
|
|
/* Have received data in the buffer. */
|
|
dataReceived = base->POPR;
|
|
/*Clear the rx fifo drain request, needed for non-DMA applications as this flag
|
|
* will remain set even if the rx fifo is empty. By manually clearing this flag, it
|
|
* either remain clear if no more data is in the fifo, or it will set if there is
|
|
* more data in the fifo.
|
|
*/
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
|
|
|
|
/* If bits/frame is one byte */
|
|
if (handle->bitsPerFrame <= 8U)
|
|
{
|
|
if (NULL != handle->rxData)
|
|
{
|
|
/* Receive buffer is not null, store data into it */
|
|
*handle->rxData = (uint8_t)dataReceived;
|
|
++handle->rxData;
|
|
}
|
|
/* Descrease remaining receive byte count */
|
|
--handle->remainingReceiveByteCount;
|
|
|
|
if (handle->remainingSendByteCount > 0U)
|
|
{
|
|
if (NULL != handle->txData)
|
|
{
|
|
dataSend = *handle->txData;
|
|
++handle->txData;
|
|
}
|
|
else
|
|
{
|
|
dataSend = dummyPattern;
|
|
}
|
|
|
|
--handle->remainingSendByteCount;
|
|
/* Write the data to the DSPI data register */
|
|
base->PUSHR_SLAVE = dataSend;
|
|
}
|
|
}
|
|
else /* If bits/frame is 2 bytes */
|
|
{
|
|
/* With multibytes frame receiving, we only receive till the received dataSize
|
|
* matches user request. Other bytes will be ignored.
|
|
*/
|
|
if (NULL != handle->rxData)
|
|
{
|
|
/* Receive buffer is not null, store first byte into it */
|
|
*handle->rxData = (uint8_t)dataReceived;
|
|
++handle->rxData;
|
|
|
|
if (handle->remainingReceiveByteCount == 1U)
|
|
{
|
|
/* Decrease remaining receive byte count */
|
|
--handle->remainingReceiveByteCount;
|
|
}
|
|
else
|
|
{
|
|
/* Receive buffer is not null, store second byte into it */
|
|
*handle->rxData = (uint8_t)(dataReceived >> 8U);
|
|
++handle->rxData;
|
|
handle->remainingReceiveByteCount -= 2U;
|
|
}
|
|
}
|
|
/* If no handle->rxData*/
|
|
else
|
|
{
|
|
if (handle->remainingReceiveByteCount == 1U)
|
|
{
|
|
/* Decrease remaining receive byte count */
|
|
--handle->remainingReceiveByteCount;
|
|
}
|
|
else
|
|
{
|
|
handle->remainingReceiveByteCount -= 2U;
|
|
}
|
|
}
|
|
|
|
if (handle->remainingSendByteCount > 0U)
|
|
{
|
|
if (NULL != handle->txData)
|
|
{
|
|
dataSend = *handle->txData;
|
|
++handle->txData;
|
|
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
--handle->remainingSendByteCount;
|
|
dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8U);
|
|
}
|
|
else
|
|
{
|
|
dataSend |= (uint32_t)(*handle->txData) << 8U;
|
|
++handle->txData;
|
|
handle->remainingSendByteCount -= 2U;
|
|
}
|
|
}
|
|
/* If no handle->txData*/
|
|
else
|
|
{
|
|
if (handle->remainingSendByteCount == 1U)
|
|
{
|
|
--handle->remainingSendByteCount;
|
|
}
|
|
else
|
|
{
|
|
handle->remainingSendByteCount -= 2U;
|
|
}
|
|
dataSend = ((uint32_t)(dummyPattern) << 8U) | dummyPattern;
|
|
}
|
|
/* Write the data to the DSPI data register */
|
|
base->PUSHR_SLAVE = dataSend;
|
|
}
|
|
}
|
|
/* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
|
|
|
|
if (handle->remainingReceiveByteCount == 0U)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Check if remaining receive byte count matches user request */
|
|
tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
|
|
if ((handle->state == (uint8_t)(kDSPI_Error)) || (tmpRemainingReceiveByteCount == 0U))
|
|
{
|
|
/* Other cases, stop the transfer. */
|
|
DSPI_SlaveTransferComplete(base, handle);
|
|
return;
|
|
}
|
|
|
|
/* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
|
|
if (0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoUnderflowFlag))
|
|
{
|
|
if (0U != (base->RSER & SPI_RSER_TFUF_RE_MASK))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoUnderflowFlag);
|
|
/* Change state to error and clear flag */
|
|
if (NULL != handle->txData)
|
|
{
|
|
handle->state = kDSPI_Error;
|
|
}
|
|
handle->errorCount++;
|
|
}
|
|
}
|
|
|
|
/* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
|
|
if (0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoOverflowFlag))
|
|
{
|
|
if (0U != (base->RSER & SPI_RSER_RFOF_RE_MASK))
|
|
{
|
|
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoOverflowFlag);
|
|
/* Change state to error and clear flag */
|
|
if (NULL != handle->txData)
|
|
{
|
|
handle->state = kDSPI_Error;
|
|
}
|
|
handle->errorCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
|
|
{
|
|
if (DSPI_IsMaster(base))
|
|
{
|
|
s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
|
|
}
|
|
else
|
|
{
|
|
s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
|
|
}
|
|
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
|
|
exception return operation might vector to incorrect interrupt */
|
|
#if defined __CORTEX_M && (__CORTEX_M == 4U)
|
|
__DSB();
|
|
#endif
|
|
}
|
|
|
|
#if defined(SPI0)
|
|
void SPI0_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[0]);
|
|
DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI1)
|
|
void SPI1_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[1]);
|
|
DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI2)
|
|
void SPI2_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[2]);
|
|
DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI3)
|
|
void SPI3_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[3]);
|
|
DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI4)
|
|
void SPI4_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[4]);
|
|
DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI5)
|
|
void SPI5_DriverIRQHandler(void)
|
|
{
|
|
assert(NULL != g_dspiHandle[5]);
|
|
DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
|
|
}
|
|
#endif
|
|
|
|
#if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
|
|
#error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !"
|
|
#endif
|