#include #include #include #include #include #include #define IMG_RESIZE_DIMS 256,256 #define BGR_MEAN 103.94,116.78,123.68 #define INPUT_SCALE 0.017 static void usage(char **argv) { printf("Usage:\n"); printf(" %s cvimodel image.jpg label_file\n", argv[0]); } int main(int argc, char **argv) { if (argc != 4) { usage(argv); exit(-1); } // load model file const char *model_file = argv[1]; CVI_MODEL_HANDLE model = nullptr; int ret = CVI_NN_RegisterModel(model_file, &model); if (CVI_RC_SUCCESS != ret) { printf("CVI_NN_RegisterModel failed, err %d\n", ret); exit(1); } printf("CVI_NN_RegisterModel succeeded\n"); // get input output tensors CVI_TENSOR *input_tensors; CVI_TENSOR *output_tensors; int32_t input_num; int32_t output_num; CVI_NN_GetInputOutputTensors(model, &input_tensors, &input_num, &output_tensors, &output_num); CVI_TENSOR *input = CVI_NN_GetTensorByName(CVI_NN_DEFAULT_TENSOR, input_tensors, input_num); assert(input); printf("input, name:%s\n", input->name); CVI_TENSOR *output = CVI_NN_GetTensorByName(CVI_NN_DEFAULT_TENSOR, output_tensors, output_num); assert(output); float qscale = CVI_NN_TensorQuantScale(input); printf("qscale:%f\n", qscale); CVI_SHAPE shape = CVI_NN_TensorShape(input); // nchw int32_t height = shape.dim[2]; int32_t width = shape.dim[3]; // imread cv::Mat image; image = cv::imread(argv[2]); if (!image.data) { printf("Could not open or find the image\n"); return -1; } // resize cv::resize(image, image, cv::Size(IMG_RESIZE_DIMS)); // linear is default // crop cv::Size size = cv::Size(height, width); cv::Rect crop(cv::Point(0.5 * (image.cols - size.width), 0.5 * (image.rows - size.height)), size); image = image(crop); // split cv::Mat channels[3]; for (int i = 0; i < 3; i++) { channels[i] = cv::Mat(height, width, CV_8SC1); } cv::split(image, channels); // normalize float mean[] = {BGR_MEAN}; for (int i = 0; i < 3; ++i) { channels[i].convertTo(channels[i], CV_8SC1, INPUT_SCALE * qscale, -1 * mean[i] * INPUT_SCALE * qscale); } // fill to input tensor int8_t *ptr = (int8_t *)CVI_NN_TensorPtr(input); int channel_size = height * width; for (int i = 0; i < 3; ++i) { memcpy(ptr + i * channel_size, channels[i].data, channel_size); } // run inference CVI_NN_Forward(model, input_tensors, input_num, output_tensors, output_num); printf("CVI_NN_Forward succeeded\n"); // output result std::vector labels; std::ifstream file(argv[3]); if (!file) { printf("Didn't find synset_words file\n"); exit(1); } else { std::string line; while (std::getline(file, line)) { labels.push_back(std::string(line)); } } int32_t top_num = 5; float *prob = (float *)CVI_NN_TensorPtr(output); int32_t count = CVI_NN_TensorCount(output); // find top-k prob and cls std::vector idx(count); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&prob](size_t idx_0, size_t idx_1) {return prob[idx_0] > prob[idx_1];}); // show results. printf("------\n"); for (size_t i = 0; i < top_num; i++) { int top_k_idx = idx[i]; printf(" %f, idx %d", prob[top_k_idx], top_k_idx); if (!labels.empty()) printf(", %s", labels[top_k_idx].c_str()); printf("\n"); } printf("------\n"); CVI_NN_CleanupModel(model); printf("CVI_NN_CleanupModel succeeded\n"); return 0; }