commit 3f4938648950a7f3bf9a19c320ca9fae7c52de20 Author: sophgo-forum-service <forum_service@sophgo.com> Date: Mon May 13 13:44:23 2024 +0800 [feat] cviruntime opensource for cv18xx soc. - a4b6a3, add cumsum and gatherelements_pt.
71 lines
2.5 KiB
Python
Executable File
71 lines
2.5 KiB
Python
Executable File
#!/usr/bin/python3
|
|
"""
|
|
Copyright (C) Cvitek Co., Ltd. 2019-2020. All rights reserved.
|
|
"""
|
|
|
|
from argparse import ArgumentParser
|
|
from cvi_toolkit.transform.BaseConverter import TensorType
|
|
from cvi_toolkit.transform.caffe_converter import CaffeConverter
|
|
from cvi_toolkit.utils.log_setting import setup_logger
|
|
from cvi_toolkit.data.preprocess import preprocess
|
|
|
|
logger = setup_logger('root', log_level="INFO")
|
|
|
|
class MyCaffeConverter(CaffeConverter):
|
|
def __init__(self, model_name, prototxt, caffe_model, mlir_file_path, batch_size=1):
|
|
super().__init__(model_name, prototxt, caffe_model, mlir_file_path, batch_size)
|
|
self.caffeop_factory['Upsample'] = lambda layer: self.convert_unpooling_op(layer);
|
|
|
|
|
|
def convert_unpooling_op(self, layer):
|
|
assert(self.layerType(layer) == "Upsample")
|
|
data, data_shape, _ = self.getOperand(layer.bottom[0])
|
|
mask, mask_shape, _ = self.getOperand(layer.bottom[1])
|
|
operands = list()
|
|
operands.append(data)
|
|
operands.append(mask)
|
|
|
|
p = layer.upsample_param
|
|
scale = p.scale
|
|
if p.HasField("upsample_h"):
|
|
unpool_h = p.upsample_h
|
|
else:
|
|
unpool_h = mask_shape[2]
|
|
if p.HasField("upsample_w"):
|
|
unpool_w = p.upsample_w
|
|
else:
|
|
unpool_w = mask_shape[3]
|
|
|
|
output_shape = [data_shape[0], data_shape[1], unpool_h, unpool_w]
|
|
|
|
custom_op_param = {
|
|
'tpu': True,
|
|
'do_quant': True,
|
|
'operation_name': 'unpooling',
|
|
'threshold_overwrite': 'backward',
|
|
'param': {
|
|
'unpool_h': unpool_h,
|
|
'unpool_w': unpool_w,
|
|
'scale': scale
|
|
}
|
|
}
|
|
print("layer name: {}, top name: {}\n".format(layer.name, layer.top[0]))
|
|
custom_op = self.CVI.add_custom_op(layer.name,
|
|
operands, output_shape, **custom_op_param)
|
|
self.addOperand(layer.top[0], custom_op, output_shape, TensorType.ACTIVATION)
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--model_path", type=str)
|
|
parser.add_argument("--model_dat", type=str)
|
|
parser.add_argument("--mlir_file_path", type=str)
|
|
args = parser.parse_args()
|
|
|
|
#preprocessor = preprocess()
|
|
#preprocessor.config(net_input_dims="360,480",
|
|
# resize_dims="360,480")
|
|
|
|
c = MyCaffeConverter('segnet', args.model_path, args.model_dat,
|
|
args.mlir_file_path, batch_size=1)
|
|
c.run()
|