commit 3f4938648950a7f3bf9a19c320ca9fae7c52de20 Author: sophgo-forum-service <forum_service@sophgo.com> Date: Mon May 13 13:44:23 2024 +0800 [feat] cviruntime opensource for cv18xx soc. - a4b6a3, add cumsum and gatherelements_pt.
98 lines
4.0 KiB
Python
98 lines
4.0 KiB
Python
#!/usr/bin/python3
|
|
"""
|
|
Copyright (C) Cvitek Co., Ltd. 2019-2020. All rights reserved.
|
|
"""
|
|
|
|
import onnx
|
|
from cvi_toolkit.transform.BaseConverter import TensorType
|
|
from cvi_toolkit.transform.onnx_converter import OnnxConverter
|
|
from cvi_toolkit.transform.tflite_converter_int8 import TFLiteConverter
|
|
from cvi_toolkit.transform.tensorflow_converter import TFConverter
|
|
from cvi_toolkit.utils.log_setting import setup_logger
|
|
from cvi_toolkit.data.preprocess import add_preprocess_parser, preprocess
|
|
|
|
logger = setup_logger('root', log_level="INFO")
|
|
|
|
class MyOnnxConverter(OnnxConverter):
|
|
def __init__(self, model_name, onnx_model, mlir_file_path, batch_size=1, preprocessor=None):
|
|
super().__init__(model_name, onnx_model, mlir_file_path, batch_size, preprocessor.to_dict())
|
|
self.onnxop_factory['LeakyRelu'] = lambda node: self.convert_leaky_relu(node);
|
|
|
|
def convert_graph(self):
|
|
"""convert all to mlir"""
|
|
|
|
# add input op
|
|
# add input op
|
|
for idx, input in enumerate(self.input_nodes):
|
|
input_shape = list()
|
|
for i, dim in enumerate(input.type.tensor_type.shape.dim):
|
|
# batch size
|
|
# dim is zero, mean mutli batch
|
|
if i == 0 and dim.dim_value <= 0:
|
|
input_shape.append(self.batch_size)
|
|
else:
|
|
input_shape.append(dim.dim_value)
|
|
|
|
if not self.preprocess_args:
|
|
input_op = self.CVI.add_input_op(input.name, idx, **{})
|
|
else:
|
|
preprocess_hint = {
|
|
'mean': self.preprocess_args['perchannel_mean'],
|
|
'scale': self.preprocess_args['perchannel_scale'],
|
|
'pixel_format': self.preprocess_args["pixel_format"],
|
|
'channel_order': self.preprocess_args["channel_order"],
|
|
'aligned': self.preprocess_args["aligned"],
|
|
'resize_dims': self.preprocess_args['resize_dims'],
|
|
'keep_aspect_ratio': self.preprocess_args['keep_aspect_ratio']
|
|
}
|
|
# add input op
|
|
input_op = self.CVI.add_input_op(input.name, idx, **preprocess_hint)
|
|
self.addOperand(input.name, input_op, input_shape, TensorType.ACTIVATION)
|
|
|
|
def NoneAndRaise(node):
|
|
raise RuntimeError("{} Op not support now".format(node.op_type))
|
|
# add node op
|
|
for n in self.converted_nodes:
|
|
self.onnxop_factory.get(n.op_type, lambda x: NoneAndRaise(x))(n)
|
|
|
|
self.add_softmax_op()
|
|
# add return op
|
|
return_op = list()
|
|
# Set output
|
|
op, _, _ = self.getOperand("prob")
|
|
return_op.append(op)
|
|
|
|
self.CVI.add_return_op(return_op)
|
|
mlir_txt = self.CVI.print_module()
|
|
with open(self.mlir_file_path, "w") as f:
|
|
f.write(mlir_txt)
|
|
|
|
def add_softmax_op(self):
|
|
softmax_op_param = {
|
|
'tpu': False,
|
|
'do_quant': False,
|
|
'operation_name': 'mysoftmax',
|
|
'threshold_overwrite': 'none',
|
|
'param': {
|
|
'axis': 1
|
|
}
|
|
}
|
|
op, input_shape, tensor_type = self.getOperand('output')
|
|
operands = list()
|
|
operands.append(op)
|
|
output_shape = input_shape
|
|
custom_op = self.CVI.add_custom_op("prob_softmax", operands, output_shape, **softmax_op_param)
|
|
self.addOperand("prob", custom_op, output_shape, TensorType.ACTIVATION)
|
|
|
|
if __name__ == "__main__":
|
|
onnx_model = onnx.load('model/resnet18.onnx')
|
|
preprocessor = preprocess()
|
|
preprocessor.config(net_input_dims="224,224",
|
|
resize_dims="256,256", crop_method='center', keep_aspect_ratio=False,
|
|
raw_scale=1.0, mean='0.406,0.456,0.485', std='0.225,0.224,0.229', input_scale=1.0,
|
|
channel_order='bgr', pixel_format=None, data_format='nchw',
|
|
aligned=False, gray=False)
|
|
c = MyOnnxConverter('resnet18', 'model/resnet18.onnx',
|
|
'resnet18.mlir', batch_size=1, preprocessor=preprocessor)
|
|
c.run()
|