Files
SDK_SG200x_V2/cviruntime/custom_op/example/yolo_v3_convert.py
carbon e25f20f7a3 add cviruntime
commit 3f4938648950a7f3bf9a19c320ca9fae7c52de20
Author: sophgo-forum-service <forum_service@sophgo.com>
Date:   Mon May 13 13:44:23 2024 +0800

    [feat] cviruntime opensource for cv18xx soc.

    - a4b6a3, add cumsum and gatherelements_pt.
2024-05-31 11:51:34 +08:00

52 lines
2.3 KiB
Python

#!/usr/bin/python3
"""
Copyright (C) Cvitek Co., Ltd. 2019-2020. All rights reserved.
"""
import onnx
from cvi_toolkit.transform.BaseConverter import TensorType
from cvi_toolkit.transform.onnx_converter import OnnxConverter
from cvi_toolkit.transform.tflite_converter_int8 import TFLiteConverter
from cvi_toolkit.transform.tensorflow_converter import TFConverter
from cvi_toolkit.utils.log_setting import setup_logger
from cvi_toolkit.data.preprocess import add_preprocess_parser, preprocess
logger = setup_logger('root', log_level="INFO")
class MyOnnxConverter(OnnxConverter):
def __init__(self, model_name, onnx_model, mlir_file_path, batch_size=1, preprocessor=None):
super().__init__(model_name, onnx_model, mlir_file_path, batch_size, preprocessor.to_dict())
self.onnxop_factory['LeakyRelu'] = lambda node: self.convert_leaky_relu(node);
def convert_leaky_relu(self, onnx_node):
assert(onnx_node.op_type == "LeakyRelu")
alpha = onnx_node.attrs.get("alpha", 0.01)
custom_op_param = {
'tpu': True,
'do_quant': True,
'operation_name': 'leaky_relu',
'threshold_overwrite': 'backward',
'param': {
'negative_slope': float(alpha)
}
}
op, input_shape, tensor_type = self.getOperand(onnx_node.inputs[0])
operands = list()
operands.append(op)
output_shape = input_shape
custom_op = self.CVI.add_custom_op("{}_{}".format(onnx_node.name, onnx_node.op_type),
operands, output_shape, **custom_op_param)
self.addOperand(onnx_node.name, custom_op, output_shape, TensorType.ACTIVATION)
if __name__ == "__main__":
onnx_model = onnx.load('model/yolov3-416.onnx')
preprocessor = preprocess()
preprocessor.config(net_input_dims="416,416",
resize_dims="416,416", crop_method='center', keep_aspect_ratio=True,
raw_scale=1.0, mean='0,0,0', std='1,1,1', input_scale=1.0,
channel_order='bgr', pixel_format=None, data_format='nchw',
aligned=False, gray=False)
c = MyOnnxConverter('yolo_v3', 'model/yolov3-416.onnx',
'yolo_v3_416.mlir', batch_size=1, preprocessor=preprocessor)
c.run()