Files
2023-10-13 14:01:41 +00:00

989 lines
31 KiB
Plaintext
Executable File
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
include "annotator/entity-data.fbs";
include "annotator/experimental/experimental.fbs";
include "annotator/grammar/dates/dates.fbs";
include "utils/codepoint-range.fbs";
include "utils/flatbuffers.fbs";
include "utils/grammar/rules.fbs";
include "utils/intents/intent-config.fbs";
include "utils/normalization.fbs";
include "utils/resources.fbs";
include "utils/tokenizer.fbs";
include "utils/zlib/buffer.fbs";
file_identifier "TC2 ";
// The possible model modes, represents a bit field.
namespace libtextclassifier3;
enum ModeFlag : int {
NONE = 0,
ANNOTATION = 1,
CLASSIFICATION = 2,
ANNOTATION_AND_CLASSIFICATION = 3,
SELECTION = 4,
ANNOTATION_AND_SELECTION = 5,
CLASSIFICATION_AND_SELECTION = 6,
ALL = 7,
}
// Enum for specifying the annotation usecase.
namespace libtextclassifier3;
enum AnnotationUsecase : int {
// Results are optimized for Smart{Select,Share,Linkify}.
ANNOTATION_USECASE_SMART = 0,
// Smart{Select,Share,Linkify}
// Results are optimized for using TextClassifier as an infrastructure that
// annotates as much as possible.
ANNOTATION_USECASE_RAW = 1,
}
namespace libtextclassifier3;
enum DatetimeExtractorType : int {
UNKNOWN_DATETIME_EXTRACTOR_TYPE = 0,
AM = 1,
PM = 2,
JANUARY = 3,
FEBRUARY = 4,
MARCH = 5,
APRIL = 6,
MAY = 7,
JUNE = 8,
JULY = 9,
AUGUST = 10,
SEPTEMBER = 11,
OCTOBER = 12,
NOVEMBER = 13,
DECEMBER = 14,
NEXT = 15,
NEXT_OR_SAME = 16,
LAST = 17,
NOW = 18,
TOMORROW = 19,
YESTERDAY = 20,
PAST = 21,
FUTURE = 22,
DAY = 23,
WEEK = 24,
MONTH = 25,
YEAR = 26,
MONDAY = 27,
TUESDAY = 28,
WEDNESDAY = 29,
THURSDAY = 30,
FRIDAY = 31,
SATURDAY = 32,
SUNDAY = 33,
DAYS = 34,
WEEKS = 35,
MONTHS = 36,
// TODO(zilka): Make the following 3 values singular for consistency.
HOURS = 37,
MINUTES = 38,
SECONDS = 39,
YEARS = 40,
DIGITS = 41,
SIGNEDDIGITS = 42,
ZERO = 43,
ONE = 44,
TWO = 45,
THREE = 46,
FOUR = 47,
FIVE = 48,
SIX = 49,
SEVEN = 50,
EIGHT = 51,
NINE = 52,
TEN = 53,
ELEVEN = 54,
TWELVE = 55,
THIRTEEN = 56,
FOURTEEN = 57,
FIFTEEN = 58,
SIXTEEN = 59,
SEVENTEEN = 60,
EIGHTEEN = 61,
NINETEEN = 62,
TWENTY = 63,
THIRTY = 64,
FORTY = 65,
FIFTY = 66,
SIXTY = 67,
SEVENTY = 68,
EIGHTY = 69,
NINETY = 70,
HUNDRED = 71,
THOUSAND = 72,
}
namespace libtextclassifier3;
enum DatetimeGroupType : int {
GROUP_UNKNOWN = 0,
GROUP_UNUSED = 1,
GROUP_YEAR = 2,
GROUP_MONTH = 3,
GROUP_DAY = 4,
GROUP_HOUR = 5,
GROUP_MINUTE = 6,
GROUP_SECOND = 7,
GROUP_AMPM = 8,
GROUP_RELATIONDISTANCE = 9,
GROUP_RELATION = 10,
GROUP_RELATIONTYPE = 11,
// Dummy groups serve just as an inflator of the selection. E.g. we might want
// to select more text than was contained in an envelope of all extractor
// spans.
GROUP_DUMMY1 = 12,
GROUP_DUMMY2 = 13,
}
// Options for the model that predicts text selection.
namespace libtextclassifier3;
table SelectionModelOptions {
// If true, before the selection is returned, the unpaired brackets contained
// in the predicted selection are stripped from the both selection ends.
// The bracket codepoints are defined in the Unicode standard:
// http://www.unicode.org/Public/UNIDATA/BidiBrackets.txt
strip_unpaired_brackets:bool = true;
// Number of hypothetical click positions on either side of the actual click
// to consider in order to enforce symmetry.
symmetry_context_size:int;
// Number of examples to bundle in one batch for inference.
batch_size:int = 1024;
// Whether to always classify a suggested selection or only on demand.
always_classify_suggested_selection:bool = false;
}
// Options for the model that classifies a text selection.
namespace libtextclassifier3;
table ClassificationModelOptions {
// Limits for phone numbers.
phone_min_num_digits:int = 7;
phone_max_num_digits:int = 15;
// Limits for addresses.
address_min_num_tokens:int;
// Maximum number of tokens to attempt a classification (-1 is unlimited).
max_num_tokens:int = -1;
}
// Options for post-checks, checksums and verification to apply on a match.
namespace libtextclassifier3;
table VerificationOptions {
verify_luhn_checksum:bool = false;
// Lua verifier to use.
// Index of the lua verifier in the model.
lua_verifier:int = -1;
}
// Behaviour of rule capturing groups.
// This specifies how the text and span of a capturing group, in a regular
// expression or from a capturing match in a grammar rule, should be handled.
namespace libtextclassifier3;
table CapturingGroup {
// If true, the span of the capturing group will be used to
// extend the selection.
extend_selection:bool = true;
// If set, the text of the capturing group will be used to set a field in
// the classfication result entity data.
entity_field_path:FlatbufferFieldPath;
// If set, the flatbuffer entity data will be merged with the
// classification result entity data.
serialized_entity_data:string (shared);
// If set, normalization to apply before text is used in entity data.
normalization_options:NormalizationOptions;
entity_data:EntityData;
}
// List of regular expression matchers to check.
namespace libtextclassifier3.RegexModel_;
table Pattern {
// The name of the collection of a match.
collection_name:string (shared);
// The pattern to check.
pattern:string (shared);
// The modes for which to apply the patterns.
enabled_modes:ModeFlag = ALL;
// The final score to assign to the results of this pattern.
target_classification_score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// If true, will use an approximate matching implementation implemented
// using Find() instead of the true Match(). This approximate matching will
// use the first Find() result and then check that it spans the whole input.
use_approximate_matching:bool = false;
compressed_pattern:CompressedBuffer;
// Verification to apply on a match.
verification_options:VerificationOptions;
capturing_group:[CapturingGroup];
// Entity data to set for a match.
serialized_entity_data:string (shared);
entity_data:EntityData;
}
namespace libtextclassifier3;
table RegexModel {
patterns:[RegexModel_.Pattern];
// If true, will compile the regexes only on first use.
lazy_regex_compilation:bool = true;
// Lua scripts for match verification.
// The verifier can access:
// * `context`: The context as a string.
// * `match`: The groups of the regex match as an array, each group gives
// * `begin`: span start
// * `end`: span end
// * `text`: the text
// The verifier is expected to return a boolean, indicating whether the
// verification succeeded or not.
lua_verifier:[string];
}
// List of regex patterns.
namespace libtextclassifier3.DatetimeModelPattern_;
table Regex {
pattern:string (shared);
// The ith entry specifies the type of the ith capturing group.
// This is used to decide how the matched content has to be parsed.
groups:[DatetimeGroupType];
compressed_pattern:CompressedBuffer;
}
namespace libtextclassifier3;
table DatetimeModelPattern {
regexes:[DatetimeModelPattern_.Regex];
// List of locale indices in DatetimeModel that represent the locales that
// these patterns should be used for. If empty, can be used for all locales.
locales:[int];
// The final score to assign to the results of this pattern.
target_classification_score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes for which to apply the patterns.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to apply the patterns.
// This is a flag field for values of AnnotationUsecase.
enabled_annotation_usecases:uint = 4294967295;
}
namespace libtextclassifier3;
table DatetimeModelExtractor {
extractor:DatetimeExtractorType;
pattern:string (shared);
locales:[int];
compressed_pattern:CompressedBuffer;
}
namespace libtextclassifier3;
table DatetimeModel {
// List of BCP 47 locale strings representing all locales supported by the
// model. The individual patterns refer back to them using an index.
locales:[string];
patterns:[DatetimeModelPattern];
extractors:[DatetimeModelExtractor];
// If true, will use the extractors for determining the match location as
// opposed to using the location where the global pattern matched.
use_extractors_for_locating:bool = true;
// List of locale ids, rules of whose are always run, after the requested
// ones.
default_locales:[int];
// If true, will generate the alternative interpretations for ambiguous
// datetime expressions.
generate_alternative_interpretations_when_ambiguous:bool = false;
// If true, will compile the regexes only on first use.
lazy_regex_compilation:bool = true;
// If true, will give only future dates (when the day is not specified).
prefer_future_for_unspecified_date:bool = false;
}
// Configuration for the tokenizer.
namespace libtextclassifier3;
table GrammarTokenizerOptions {
tokenization_type:TokenizationType = ICU;
// If true, white space tokens will be kept when using the icu tokenizer.
icu_preserve_whitespace_tokens:bool = false;
// Codepoint ranges that determine what role the different codepoints play
// during tokenized. The ranges must not overlap.
tokenization_codepoint_config:[TokenizationCodepointRange];
// A set of codepoint ranges to use in the mixed tokenization mode to identify
// stretches of tokens to re-tokenize using the internal tokenizer.
internal_tokenizer_codepoint_ranges:[CodepointRange];
// If true, tokens will be also split when the codepoint's script_id changes
// as defined in TokenizationCodepointRange.
tokenize_on_script_change:bool = false;
}
// Options for grammar date/datetime/date range annotations.
namespace libtextclassifier3.GrammarDatetimeModel_;
table AnnotationOptions {
// If enabled, extract special day offset like today, yesterday, etc.
enable_special_day_offset:bool = true;
// If true, merge the adjacent day of week, time and date. e.g.
// "20/2/2016 at 8pm" is extracted as a single instance instead of two
// instance: "20/2/2016" and "8pm".
merge_adjacent_components:bool = true;
// List the extra id of requested dates.
extra_requested_dates:[string];
// If true, try to include preposition to the extracted annotation. e.g.
// "at 6pm". if it's false, only 6pm is included. offline-actions has
// special requirements to include preposition.
include_preposition:bool = true;
// If enabled, extract range in date annotator.
// input: Monday, 5-6pm
// If the flag is true, The extracted annotation only contains 1 range
// instance which is from Monday 5pm to 6pm.
// If the flag is false, The extracted annotation contains two date
// instance: "Monday" and "6pm".
enable_date_range:bool = true;
reserved_6:int16 (deprecated);
// If enabled, the rule priority score is used to set the priority score of
// the annotation.
// In case of false the annotation priority score is set from
// GrammarDatetimeModel's priority_score
use_rule_priority_score:bool = false;
// If enabled, annotator will try to resolve the ambiguity by generating
// possible alternative interpretations of the input text
// e.g. '9:45' will be resolved to '9:45 AM' and '9:45 PM'.
generate_alternative_interpretations_when_ambiguous:bool;
// List of spans which grammar will ignore during the match e.g. if
// “@” is in the allowed span list and input is “12 March @ 12PM” then “@”
// will be ignored and 12 March @ 12PM will be translate to
// {Day:12 Month: March Hour: 12 MERIDIAN: PM}.
// This can also be achieved by adding additional rules e.g.
// <Digit_Day> <Month> <Time>
// <Digit_Day> <Month> @ <Time>
// Though this is doable in the grammar but requires multiple rules, this
// list enables the rule to represent multiple rules.
ignored_spans:[string];
}
namespace libtextclassifier3;
table GrammarDatetimeModel {
// List of BCP 47 locale strings representing all locales supported by the
// model.
locales:[string];
// If true, will give only future dates (when the day is not specified).
prefer_future_for_unspecified_date:bool = false;
// Grammar specific tokenizer options.
grammar_tokenizer_options:GrammarTokenizerOptions;
// The modes for which to apply the grammars.
enabled_modes:ModeFlag = ALL;
// The datetime grammar rules.
datetime_rules:dates.DatetimeRules;
// The final score to assign to the results of grammar model
target_classification_score:float = 1;
// The priority score used for conflict resolution with the other models.
priority_score:float = 0;
// Options for grammar annotations.
annotation_options:GrammarDatetimeModel_.AnnotationOptions;
}
namespace libtextclassifier3.DatetimeModelLibrary_;
table Item {
key:string (shared);
value:DatetimeModel;
}
// A set of named DateTime models.
namespace libtextclassifier3;
table DatetimeModelLibrary {
models:[DatetimeModelLibrary_.Item];
}
// Classification result to instantiate for a rule match.
namespace libtextclassifier3.GrammarModel_;
table RuleClassificationResult {
// The name of the collection.
collection_name:string (shared);
// The score.
target_classification_score:float = 1;
// The priority score used for conflict resolution with the other models.
priority_score:float = 0;
// Behaviour of capturing matches.
capturing_group:[CapturingGroup];
// Entity data to set for a match.
serialized_entity_data:string (shared);
// Enabled modes.
enabled_modes:ModeFlag = ALL;
entity_data:EntityData;
}
// Configuration for grammar based annotators.
namespace libtextclassifier3;
table GrammarModel {
// The grammar rules.
rules:grammar.RulesSet;
rule_classification_result:[GrammarModel_.RuleClassificationResult];
// Number of tokens in the context to use for classification and text
// selection suggestion.
// A value -1 uses the full context.
context_left_num_tokens:int;
context_right_num_tokens:int;
// Grammar specific tokenizer options.
tokenizer_options:GrammarTokenizerOptions;
}
namespace libtextclassifier3;
table MoneyParsingOptions {
// Separators (codepoints) marking decimal or thousand in the money amount.
separators:[int];
}
namespace libtextclassifier3.ModelTriggeringOptions_;
table CollectionToPriorityEntry {
key:string (key, shared);
value:float;
}
// Options controlling the output of the Tensorflow Lite models.
namespace libtextclassifier3;
table ModelTriggeringOptions {
// Lower bound threshold for filtering annotation model outputs.
min_annotate_confidence:float = 0;
// The modes for which to enable the models.
enabled_modes:ModeFlag = ALL;
// Comma-separated list of locales (BCP 47 tags) that dictionary
// classification supports.
dictionary_locales:string (shared);
// Comma-separated list of locales (BCP 47 tags) that the model supports, that
// are used to prevent triggering on input in unsupported languages. If
// empty, the model will trigger on all inputs.
locales:string (shared);
// Priority score assigned to the "other" class from ML model.
other_collection_priority_score:float = -1000;
// Priority score assigned to knowledge engine annotations.
knowledge_priority_score:float = 0;
reserved_7:int16 (deprecated);
// Apply a factor to the priority score for entities that are added to this
// map. Key: collection type e.g. "address", "phone"..., Value: float number.
// NOTE: The entries here need to be sorted since we use LookupByKey.
collection_to_priority:[ModelTriggeringOptions_.CollectionToPriorityEntry];
}
// Options controlling the output of the classifier.
namespace libtextclassifier3;
table OutputOptions {
// Lists of collection names that will be filtered out at the output:
// - For annotation, the spans of given collection are simply dropped.
// - For classification, the result is mapped to the class "other".
// - For selection, the spans of given class are returned as
// single-selection.
filtered_collections_annotation:[string];
filtered_collections_classification:[string];
filtered_collections_selection:[string];
}
namespace libtextclassifier3.Model_;
table EmbeddingPruningMask {
// If true, use pruning mask. In this case, we use mask
// pruning_mask to determine the mapping of hashed-charactergrams.
enabled:bool;
// Packing of the binary pruning mask into uint64 values.
pruning_mask:[ulong] (force_align: 16);
// Number of buckets before pruning.
full_num_buckets:int;
// Index of row of compressed embedding matrix to which all pruned buckets
// are mapped.
pruned_row_bucket_id:int;
}
namespace libtextclassifier3.Model_;
table ConflictResolutionOptions {
// If true, will prioritize the longest annotation during conflict
// resolution.
prioritize_longest_annotation:bool = false;
// If true, the annotator will perform conflict resolution between the
// different sub-annotators also in the RAW mode. If false, no conflict
// resolution will be performed in RAW mode.
do_conflict_resolution_in_raw_mode:bool = true;
}
namespace libtextclassifier3;
table Model {
// Comma-separated list of locales supported by the model as BCP 47 tags.
locales:string (shared);
version:int;
// A name for the model that can be used for e.g. logging.
name:string (shared);
selection_feature_options:FeatureProcessorOptions;
classification_feature_options:FeatureProcessorOptions;
// Tensorflow Lite models.
selection_model:[ubyte] (force_align: 16);
classification_model:[ubyte] (force_align: 16);
embedding_model:[ubyte] (force_align: 16);
// Options for the different models.
selection_options:SelectionModelOptions;
classification_options:ClassificationModelOptions;
regex_model:RegexModel;
datetime_model:DatetimeModel;
// Options controlling the output of the models.
triggering_options:ModelTriggeringOptions;
// Global switch that controls if SuggestSelection(), ClassifyText() and
// Annotate() will run. If a mode is disabled it returns empty/no-op results.
enabled_modes:ModeFlag = ALL;
// If true, will snap the selections that consist only of whitespaces to the
// containing suggested span. Otherwise, no suggestion is proposed, since the
// selections are not part of any token.
snap_whitespace_selections:bool = true;
// Global configuration for the output of SuggestSelection(), ClassifyText()
// and Annotate().
output_options:OutputOptions;
// Configures how Intents should be generated on Android.
android_intent_options:AndroidIntentFactoryOptions;
intent_options:IntentFactoryModel;
// Model resources.
resources:ResourcePool;
// Schema data for handling entity data.
entity_data_schema:[ubyte];
number_annotator_options:NumberAnnotatorOptions;
duration_annotator_options:DurationAnnotatorOptions;
// Comma-separated list of locales (BCP 47 tags) that the model supports, that
// are used to prevent triggering on input in unsupported languages. If
// empty, the model will trigger on all inputs.
triggering_locales:string (shared);
embedding_pruning_mask:Model_.EmbeddingPruningMask;
grammar_datetime_model:GrammarDatetimeModel;
contact_annotator_options:ContactAnnotatorOptions;
money_parsing_options:MoneyParsingOptions;
translate_annotator_options:TranslateAnnotatorOptions;
grammar_model:GrammarModel;
conflict_resolution_options:Model_.ConflictResolutionOptions;
experimental_model:ExperimentalModel;
}
// Method for selecting the center token.
namespace libtextclassifier3.FeatureProcessorOptions_;
enum CenterTokenSelectionMethod : int {
DEFAULT_CENTER_TOKEN_METHOD = 0,
// Invalid option.
// Use click indices to determine the center token.
CENTER_TOKEN_FROM_CLICK = 1,
// Use selection indices to get a token range, and select the middle of it
// as the center token.
CENTER_TOKEN_MIDDLE_OF_SELECTION = 2,
}
// Bounds-sensitive feature extraction configuration.
namespace libtextclassifier3.FeatureProcessorOptions_;
table BoundsSensitiveFeatures {
// Enables the extraction of bounds-sensitive features, instead of the click
// context features.
enabled:bool;
// The numbers of tokens to extract in specific locations relative to the
// bounds.
// Immediately before the span.
num_tokens_before:int;
// Inside the span, aligned with the beginning.
num_tokens_inside_left:int;
// Inside the span, aligned with the end.
num_tokens_inside_right:int;
// Immediately after the span.
num_tokens_after:int;
// If true, also extracts the tokens of the entire span and adds up their
// features forming one "token" to include in the extracted features.
include_inside_bag:bool;
// If true, includes the selection length (in the number of tokens) as a
// feature.
include_inside_length:bool;
// If true, for selection, single token spans are not run through the model
// and their score is assumed to be zero.
score_single_token_spans_as_zero:bool;
}
namespace libtextclassifier3;
table FeatureProcessorOptions {
// Number of buckets used for hashing charactergrams.
num_buckets:int = -1;
// Size of the embedding.
embedding_size:int = -1;
// Number of bits for quantization for embeddings.
embedding_quantization_bits:int = 8;
// Context size defines the number of words to the left and to the right of
// the selected word to be used as context. For example, if context size is
// N, then we take N words to the left and N words to the right of the
// selected word as its context.
context_size:int = -1;
// Maximum number of words of the context to select in total.
max_selection_span:int = -1;
// Orders of charactergrams to extract. E.g., 2 means character bigrams, 3
// character trigrams etc.
chargram_orders:[int];
// Maximum length of a word, in codepoints.
max_word_length:int = 20;
// If true, will use the unicode-aware functionality for extracting features.
unicode_aware_features:bool = false;
// Whether to extract the token case feature.
extract_case_feature:bool = false;
// Whether to extract the selection mask feature.
extract_selection_mask_feature:bool = false;
// List of regexps to run over each token. For each regexp, if there is a
// match, a dense feature of 1.0 is emitted. Otherwise -1.0 is used.
regexp_feature:[string];
// Whether to remap all digits to a single number.
remap_digits:bool = false;
// Whether to lower-case each token before generating hashgrams.
lowercase_tokens:bool;
// If true, the selection classifier output will contain only the selections
// that are feasible (e.g., those that are shorter than max_selection_span),
// if false, the output will be a complete cross-product of possible
// selections to the left and possible selections to the right, including the
// infeasible ones.
// NOTE: Exists mainly for compatibility with older models that were trained
// with the non-reduced output space.
selection_reduced_output_space:bool = true;
// Collection names.
collections:[string];
// An index of collection in collections to be used if a collection name can't
// be mapped to an id.
default_collection:int = -1;
// If true, will split the input by lines, and only use the line that contains
// the clicked token.
only_use_line_with_click:bool = false;
// If true, will split tokens that contain the selection boundary, at the
// position of the boundary.
// E.g. "foo{bar}@google.com" -> "foo", "bar", "@google.com"
split_tokens_on_selection_boundaries:bool = false;
// Codepoint ranges that determine how different codepoints are tokenized.
// The ranges must not overlap.
tokenization_codepoint_config:[TokenizationCodepointRange];
center_token_selection_method:FeatureProcessorOptions_.CenterTokenSelectionMethod;
// If true, span boundaries will be snapped to containing tokens and not
// required to exactly match token boundaries.
snap_label_span_boundaries_to_containing_tokens:bool;
// A set of codepoint ranges supported by the model.
supported_codepoint_ranges:[CodepointRange];
// A set of codepoint ranges to use in the mixed tokenization mode to identify
// stretches of tokens to re-tokenize using the internal tokenizer.
internal_tokenizer_codepoint_ranges:[CodepointRange];
// Minimum ratio of supported codepoints in the input context. If the ratio
// is lower than this, the feature computation will fail.
min_supported_codepoint_ratio:float = 0;
// Used for versioning the format of features the model expects.
// - feature_version == 0:
// For each token the features consist of:
// - chargram embeddings
// - dense features
// Chargram embeddings for tokens are concatenated first together,
// and at the end, the dense features for the tokens are concatenated
// to it. So the resulting feature vector has two regions.
feature_version:int = 0;
tokenization_type:TokenizationType = INTERNAL_TOKENIZER;
icu_preserve_whitespace_tokens:bool = false;
// List of codepoints that will be stripped from beginning and end of
// predicted spans.
ignored_span_boundary_codepoints:[int];
bounds_sensitive_features:FeatureProcessorOptions_.BoundsSensitiveFeatures;
// List of allowed charactergrams. The extracted charactergrams are filtered
// using this list, and charactergrams that are not present are interpreted as
// out-of-vocabulary.
// If no allowed_chargrams are specified, all charactergrams are allowed.
// The field is typed as bytes type to allow non-UTF8 chargrams.
allowed_chargrams:[string];
// If true, tokens will be also split when the codepoint's script_id changes
// as defined in TokenizationCodepointRange.
tokenize_on_script_change:bool = false;
// If true, the pipe character '|' will be used as a newline character when
// splitting lines.
use_pipe_character_for_newline:bool = true;
}
namespace libtextclassifier3;
table NumberAnnotatorOptions {
// If true, number and percentage annotations will be produced.
enabled:bool = false;
// Score to assign to the annotated numbers and percentages in the annotator.
score:float = 1;
// Number priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes in which to enable number and percentage annotations.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to produce number annotations.
// This is a flag field for values of AnnotationUsecase.
enabled_annotation_usecases:uint = 4294967295;
// [Deprecated] A list of codepoints that can form a prefix of a valid number.
allowed_prefix_codepoints:[int];
// [Deprecated] A list of codepoints that can form a suffix of a valid number.
allowed_suffix_codepoints:[int];
// [Deprecated] List of codepoints that will be stripped from beginning of
// predicted spans.
ignored_prefix_span_boundary_codepoints:[int];
// [Deprecated] List of codepoints that will be stripped from end of predicted
// spans.
ignored_suffix_span_boundary_codepoints:[int];
// [Deprecated] If true, percent annotations will be produced.
enable_percentage:bool = false;
// Zero separated and ordered list of suffixes that mark a percent.
percentage_pieces_string:string (shared);
// [Deprecated] List of suffixes offsets in the percent_pieces_string string.
percentage_pieces_offsets:[int];
// Priority score for the percentage annotation.
percentage_priority_score:float = 1;
// Float number priority score used for conflict resolution with the other
// models.
float_number_priority_score:float = 0;
// The maximum number of digits an annotated number can have. Requirement:
// the value should be less or equal to 20.
max_number_of_digits:int = 20;
// The annotation usecases for which to produce percentage annotations.
// This is a flag field for values of AnnotationUsecase.
percentage_annotation_usecases:uint = 2;
}
// DurationAnnotator is so far tailored for English and Japanese only.
namespace libtextclassifier3;
table DurationAnnotatorOptions {
// If true, duration annotations will be produced.
enabled:bool = false;
// Score to assign to the annotated durations from the annotator.
score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes in which to enable duration annotations.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to produce duration annotations.
enabled_annotation_usecases:uint = 4294967295;
// Durations typically look like XX hours and XX minutes etc... The list of
// strings below enumerate variants of "hours", "minutes", etc. in these
// expressions. These are verbatim strings that are matched against tokens in
// the input.
week_expressions:[string];
day_expressions:[string];
hour_expressions:[string];
minute_expressions:[string];
second_expressions:[string];
// List of expressions that doesn't break a duration expression (can become
// a part of it) but has not semantic meaning.
filler_expressions:[string];
// List of expressions that mean half of a unit of duration (e.g. "half an
// hour").
half_expressions:[string];
// Set of condepoints that can split the Annotator tokens to sub-tokens for
// sub-token matching.
sub_token_separator_codepoints:[int];
// If this is true, unit must be associated with quantity. For example, a
// phrase "minute" is not parsed as one minute duration if this is true.
require_quantity:bool;
// If this is true, dangling quantity is included in the annotation. For
// example, "10 minutes 20" is interpreted as 10 minutes and 20 seconds.
enable_dangling_quantity_interpretation:bool = true;
}
namespace libtextclassifier3;
table ContactAnnotatorOptions {
// Supported for English genitives only so far.
enable_declension:bool;
// For each language there is a customized list of supported declensions.
language:string (shared);
}
namespace libtextclassifier3.TranslateAnnotatorOptions_;
enum Algorithm : int {
DEFAULT_ALGORITHM = 0,
BACKOFF = 1,
}
// Backoff is the algorithm shipped with Android Q.
namespace libtextclassifier3.TranslateAnnotatorOptions_;
table BackoffOptions {
// The minimum size of text to prefer for detection (in codepoints).
min_text_size:int = 20;
// For reducing the score when text is less than the preferred size.
penalize_ratio:float = 1;
// Original detection score to surrounding text detection score ratios.
subject_text_score_ratio:float = 0.4;
}
namespace libtextclassifier3;
table TranslateAnnotatorOptions {
enabled:bool = false;
// Score to assign to the classification results.
score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float;
algorithm:TranslateAnnotatorOptions_.Algorithm;
backoff_options:TranslateAnnotatorOptions_.BackoffOptions;
}
root_type libtextclassifier3.Model;