209 lines
5.8 KiB
C
209 lines
5.8 KiB
C
/* $Id: t_spExtras.c $ */
|
|
|
|
/***** BEGIN LICENSE BLOCK *****
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* Copyright (c) 2001-15 David Ireland, D.I. Management Services Pty Limited
|
|
* <http://www.di-mgt.com.au/bigdigits.html>. All rights reserved.
|
|
*
|
|
***** END LICENSE BLOCK *****/
|
|
/*
|
|
* Last updated:
|
|
* $Date: 2015-10-22 10:23:00 $
|
|
* $Revision: 2.5.0 $
|
|
* $Author: dai $
|
|
*/
|
|
|
|
/* Some tests for `extra' single-precision functions
|
|
-- some tests assume word size >= 32 bits
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include "bigdigits.h"
|
|
#include "spExtras.h"
|
|
|
|
#ifndef NELEMS
|
|
#define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0])))
|
|
#endif /* NELEMS */
|
|
|
|
static int is_in_list(DIGIT_T a, DIGIT_T *list, size_t n)
|
|
/* Returns true (1) if a is in list of n elements; else false (0) */
|
|
{
|
|
size_t i;
|
|
int result = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (a == list[i])
|
|
{
|
|
result = 1;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
DIGIT_T x, y, g;
|
|
DIGIT_T m, e, n, c, z, t;
|
|
DIGIT_T p, v, u, w, a, q;
|
|
int res, i, ntries;
|
|
DIGIT_T primes32[] = { 5, 17, 65, 99 };
|
|
DIGIT_T primes16[] = { 15, 17, 39 };
|
|
|
|
/* Test greatest common divisor (gcd) */
|
|
printf("Test spGcd:\n");
|
|
/* simple one */
|
|
x = 15; y = 27;
|
|
g = spGcd(x, y);
|
|
printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
|
|
assert(g == 3);
|
|
|
|
/* contrived using small primes */
|
|
x = 53 * 37; y = 53 * 83;
|
|
g = spGcd(x, y);
|
|
printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
|
|
assert(g == 53);
|
|
|
|
/* contrived using bigger primes */
|
|
x = 0x0345 * 0xfedc; y = 0xfedc * 0x0871;
|
|
g = spGcd(x, y);
|
|
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = 0x%" PRIxBIGD "\n", x, y, g);
|
|
assert(g == 0xfedc);
|
|
|
|
/* Known primes: 2^16-15, 2^32-5 */
|
|
y = 0x10000 - 15;
|
|
x = spSimpleRand(1, y);
|
|
g = spGcd(x, y);
|
|
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
|
|
assert(g == 1);
|
|
|
|
y = 0xffffffff - 5 + 1;
|
|
x = spSimpleRand(1, y);
|
|
g = spGcd(x, y);
|
|
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
|
|
assert(g == 1);
|
|
|
|
/* Test spModExp */
|
|
printf("Test spModExp:\n");
|
|
/* Verify that (m^e mod n).(z^e mod n) == (m.z)^e mod n
|
|
for random m, e, n, z */
|
|
/* Generate some random numbers */
|
|
n = spSimpleRand(MAX_DIGIT / 2, MAX_DIGIT);
|
|
m = spSimpleRand(1, n -1);
|
|
e = spSimpleRand(1, n -1);
|
|
z = spSimpleRand(1, n -1);
|
|
/* Compute c = m^e mod n */
|
|
spModExp(&c, m, e, n);
|
|
printf("c=m^e mod n=%" PRIxBIGD "^%" PRIxBIGD " mod %" PRIxBIGD "=%" PRIxBIGD "\n", m, e, n, c);
|
|
/* Compute x = c.z^e mod n */
|
|
printf("z=%" PRIxBIGD "\n", z);
|
|
spModExp(&t, z, e, n);
|
|
spModMult(&x, c, t, n);
|
|
printf("x = c.z^e mod n = %" PRIxBIGD "\n", x);
|
|
/* Compute y = (m.z)^e mod n */
|
|
spModMult(&t, m, z, n);
|
|
spModExp(&y, t, e, n);
|
|
printf("y = (m.z)^e mod n = %" PRIxBIGD "\n", x);
|
|
/* Check they are equal */
|
|
assert(x == y);
|
|
|
|
/* Test spModInv */
|
|
printf("Test spModInv:\n");
|
|
/* Use identity that (vp-1)^-1 mod p = p-1
|
|
for prime p and integer v */
|
|
/* known prime */
|
|
p = 0x10000 - 15;
|
|
/* small multiplier */
|
|
v = spSimpleRand(2, 10);
|
|
u = v * p - 1;
|
|
printf("u = vp-1 = %" PRIuBIGD " * %" PRIuBIGD " - 1 = %" PRIuBIGD "\n", v, p, u);
|
|
/* compute w = u^-1 mod p */
|
|
spModInv(&w, u, p);
|
|
printf("w = u^-1 mod p = %" PRIuBIGD "\n", w);
|
|
/* check wu mod p == 1 */
|
|
spModMult(&c, w, u, p);
|
|
printf("Check 1 == wu mod p = %" PRIuBIGD "\n", c);
|
|
assert(c == 1);
|
|
/* Try mod inversion that should fail */
|
|
/* Set u = pq so that gcd(u, p) != 1 */
|
|
q = 31;
|
|
u = p * q;
|
|
printf("p=%" PRIuBIGD " q=%" PRIuBIGD " pq=%" PRIuBIGD "\n", p, q, u);
|
|
printf("gcd(pq, p) = %" PRIuBIGD " (i.e. not 1)\n", spGcd(u, p));
|
|
res = spModInv(&w, u, p);
|
|
printf("w = (pq)^-1 mod p returns error %d (expected 1)\n", res);
|
|
assert(res != 0);
|
|
|
|
/* Test spIsPrime */
|
|
printf("Test spIsPrime:\n");
|
|
/* Find primes just less than 2^32. Ref: Knuth p408 */
|
|
for (n = 0xffffffff, a = 1; a < 100; a++, n--)
|
|
{
|
|
if (spIsPrime(n, 50))
|
|
{
|
|
printf("2^32-%" PRIuBIGD " is prime\n", a);
|
|
assert(is_in_list(a, primes32, NELEMS(primes32)));
|
|
}
|
|
}
|
|
/* And just less than 2^16 */
|
|
for (n = 0xffff, a = 1; a < 50; a++, n--)
|
|
{
|
|
if (spIsPrime(n, 50))
|
|
{
|
|
printf("2^16-%" PRIuBIGD " is prime\n", a);
|
|
assert(is_in_list(a, primes16, NELEMS(primes16)));
|
|
}
|
|
}
|
|
/* Generate a random prime < MAX_DIGIT */
|
|
n = spSimpleRand(0, MAX_DIGIT);
|
|
/* make sure odd */
|
|
n |= 0x01;
|
|
/* expect to find a prime approx every lg(n) numbers,
|
|
so for sure within 100 times that */
|
|
ntries = BITS_PER_DIGIT * 100;
|
|
for (i = 0; i < ntries; i++)
|
|
{
|
|
if (spIsPrime(n, 50))
|
|
break;
|
|
n += 2;
|
|
}
|
|
printf("Random prime, n = %" PRIuBIGD " (0x%" PRIxBIGD ")\n", n, n);
|
|
printf("found after %d candidates\n", i+1);
|
|
if (i >= ntries)
|
|
printf("Didn't manage to find a prime in %d tries!\n", ntries);
|
|
else
|
|
assert(spIsPrime(n, 50));
|
|
|
|
res = spIsPrime(n, 50);
|
|
printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));
|
|
|
|
/* Check using (less accurate) Fermat test (these could fail) */
|
|
w = 2;
|
|
spModExp(&x, w, n-1, n);
|
|
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
|
|
w = 3;
|
|
spModExp(&x, w, n-1, n);
|
|
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
|
|
w = 5;
|
|
spModExp(&x, w, n-1, n);
|
|
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
|
|
|
|
/* Try a known Fermat liar (Carmichael number) */
|
|
n = 561;
|
|
printf("Try n = 561 = 3*11*17 (a 'Fermat liar')\n");
|
|
w = 5;
|
|
spModExp(&x, w, n-1, n);
|
|
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
|
|
res = spIsPrime(n, 50);
|
|
printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));
|
|
assert(!res);
|
|
|
|
return 0;
|
|
}
|