Files
MilkV-Duo/fsbl/lib/BigDigits/t_spExtras.c
2024-04-02 21:49:47 +08:00

209 lines
5.8 KiB
C

/* $Id: t_spExtras.c $ */
/***** BEGIN LICENSE BLOCK *****
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright (c) 2001-15 David Ireland, D.I. Management Services Pty Limited
* <http://www.di-mgt.com.au/bigdigits.html>. All rights reserved.
*
***** END LICENSE BLOCK *****/
/*
* Last updated:
* $Date: 2015-10-22 10:23:00 $
* $Revision: 2.5.0 $
* $Author: dai $
*/
/* Some tests for `extra' single-precision functions
-- some tests assume word size >= 32 bits
*/
#include <stdio.h>
#include <assert.h>
#include "bigdigits.h"
#include "spExtras.h"
#ifndef NELEMS
#define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0])))
#endif /* NELEMS */
static int is_in_list(DIGIT_T a, DIGIT_T *list, size_t n)
/* Returns true (1) if a is in list of n elements; else false (0) */
{
size_t i;
int result = 0;
for (i = 0; i < n; i++)
{
if (a == list[i])
{
result = 1;
break;
}
}
return result;
}
int main(void)
{
DIGIT_T x, y, g;
DIGIT_T m, e, n, c, z, t;
DIGIT_T p, v, u, w, a, q;
int res, i, ntries;
DIGIT_T primes32[] = { 5, 17, 65, 99 };
DIGIT_T primes16[] = { 15, 17, 39 };
/* Test greatest common divisor (gcd) */
printf("Test spGcd:\n");
/* simple one */
x = 15; y = 27;
g = spGcd(x, y);
printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
assert(g == 3);
/* contrived using small primes */
x = 53 * 37; y = 53 * 83;
g = spGcd(x, y);
printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
assert(g == 53);
/* contrived using bigger primes */
x = 0x0345 * 0xfedc; y = 0xfedc * 0x0871;
g = spGcd(x, y);
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = 0x%" PRIxBIGD "\n", x, y, g);
assert(g == 0xfedc);
/* Known primes: 2^16-15, 2^32-5 */
y = 0x10000 - 15;
x = spSimpleRand(1, y);
g = spGcd(x, y);
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
assert(g == 1);
y = 0xffffffff - 5 + 1;
x = spSimpleRand(1, y);
g = spGcd(x, y);
printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
assert(g == 1);
/* Test spModExp */
printf("Test spModExp:\n");
/* Verify that (m^e mod n).(z^e mod n) == (m.z)^e mod n
for random m, e, n, z */
/* Generate some random numbers */
n = spSimpleRand(MAX_DIGIT / 2, MAX_DIGIT);
m = spSimpleRand(1, n -1);
e = spSimpleRand(1, n -1);
z = spSimpleRand(1, n -1);
/* Compute c = m^e mod n */
spModExp(&c, m, e, n);
printf("c=m^e mod n=%" PRIxBIGD "^%" PRIxBIGD " mod %" PRIxBIGD "=%" PRIxBIGD "\n", m, e, n, c);
/* Compute x = c.z^e mod n */
printf("z=%" PRIxBIGD "\n", z);
spModExp(&t, z, e, n);
spModMult(&x, c, t, n);
printf("x = c.z^e mod n = %" PRIxBIGD "\n", x);
/* Compute y = (m.z)^e mod n */
spModMult(&t, m, z, n);
spModExp(&y, t, e, n);
printf("y = (m.z)^e mod n = %" PRIxBIGD "\n", x);
/* Check they are equal */
assert(x == y);
/* Test spModInv */
printf("Test spModInv:\n");
/* Use identity that (vp-1)^-1 mod p = p-1
for prime p and integer v */
/* known prime */
p = 0x10000 - 15;
/* small multiplier */
v = spSimpleRand(2, 10);
u = v * p - 1;
printf("u = vp-1 = %" PRIuBIGD " * %" PRIuBIGD " - 1 = %" PRIuBIGD "\n", v, p, u);
/* compute w = u^-1 mod p */
spModInv(&w, u, p);
printf("w = u^-1 mod p = %" PRIuBIGD "\n", w);
/* check wu mod p == 1 */
spModMult(&c, w, u, p);
printf("Check 1 == wu mod p = %" PRIuBIGD "\n", c);
assert(c == 1);
/* Try mod inversion that should fail */
/* Set u = pq so that gcd(u, p) != 1 */
q = 31;
u = p * q;
printf("p=%" PRIuBIGD " q=%" PRIuBIGD " pq=%" PRIuBIGD "\n", p, q, u);
printf("gcd(pq, p) = %" PRIuBIGD " (i.e. not 1)\n", spGcd(u, p));
res = spModInv(&w, u, p);
printf("w = (pq)^-1 mod p returns error %d (expected 1)\n", res);
assert(res != 0);
/* Test spIsPrime */
printf("Test spIsPrime:\n");
/* Find primes just less than 2^32. Ref: Knuth p408 */
for (n = 0xffffffff, a = 1; a < 100; a++, n--)
{
if (spIsPrime(n, 50))
{
printf("2^32-%" PRIuBIGD " is prime\n", a);
assert(is_in_list(a, primes32, NELEMS(primes32)));
}
}
/* And just less than 2^16 */
for (n = 0xffff, a = 1; a < 50; a++, n--)
{
if (spIsPrime(n, 50))
{
printf("2^16-%" PRIuBIGD " is prime\n", a);
assert(is_in_list(a, primes16, NELEMS(primes16)));
}
}
/* Generate a random prime < MAX_DIGIT */
n = spSimpleRand(0, MAX_DIGIT);
/* make sure odd */
n |= 0x01;
/* expect to find a prime approx every lg(n) numbers,
so for sure within 100 times that */
ntries = BITS_PER_DIGIT * 100;
for (i = 0; i < ntries; i++)
{
if (spIsPrime(n, 50))
break;
n += 2;
}
printf("Random prime, n = %" PRIuBIGD " (0x%" PRIxBIGD ")\n", n, n);
printf("found after %d candidates\n", i+1);
if (i >= ntries)
printf("Didn't manage to find a prime in %d tries!\n", ntries);
else
assert(spIsPrime(n, 50));
res = spIsPrime(n, 50);
printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));
/* Check using (less accurate) Fermat test (these could fail) */
w = 2;
spModExp(&x, w, n-1, n);
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
w = 3;
spModExp(&x, w, n-1, n);
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
w = 5;
spModExp(&x, w, n-1, n);
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
/* Try a known Fermat liar (Carmichael number) */
n = 561;
printf("Try n = 561 = 3*11*17 (a 'Fermat liar')\n");
w = 5;
spModExp(&x, w, n-1, n);
printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
res = spIsPrime(n, 50);
printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));
assert(!res);
return 0;
}