568 lines
19 KiB
C++
568 lines
19 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_UTILS_H_
|
|
#define ART_RUNTIME_UTILS_H_
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/mutex.h"
|
|
#include "globals.h"
|
|
#include "instruction_set.h"
|
|
#include "primitive.h"
|
|
|
|
#ifdef HAVE_ANDROID_OS
|
|
#include "cutils/properties.h"
|
|
#endif
|
|
|
|
namespace art {
|
|
|
|
class DexFile;
|
|
|
|
namespace mirror {
|
|
class ArtField;
|
|
class ArtMethod;
|
|
class Class;
|
|
class Object;
|
|
class String;
|
|
} // namespace mirror
|
|
|
|
enum TimeUnit {
|
|
kTimeUnitNanosecond,
|
|
kTimeUnitMicrosecond,
|
|
kTimeUnitMillisecond,
|
|
kTimeUnitSecond,
|
|
};
|
|
|
|
template <typename T>
|
|
bool ParseUint(const char *in, T* out) {
|
|
char* end;
|
|
unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int)
|
|
if (in == end || *end != '\0') {
|
|
return false;
|
|
}
|
|
if (std::numeric_limits<T>::max() < result) {
|
|
return false;
|
|
}
|
|
*out = static_cast<T>(result);
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool ParseInt(const char* in, T* out) {
|
|
char* end;
|
|
long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int)
|
|
if (in == end || *end != '\0') {
|
|
return false;
|
|
}
|
|
if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
|
|
return false;
|
|
}
|
|
*out = static_cast<T>(result);
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
static constexpr bool IsPowerOfTwo(T x) {
|
|
return (x & (x - 1)) == 0;
|
|
}
|
|
|
|
template<int n, typename T>
|
|
static inline bool IsAligned(T x) {
|
|
COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two);
|
|
return (x & (n - 1)) == 0;
|
|
}
|
|
|
|
template<int n, typename T>
|
|
static inline bool IsAligned(T* x) {
|
|
return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
|
|
}
|
|
|
|
template<typename T>
|
|
static inline bool IsAlignedParam(T x, int n) {
|
|
return (x & (n - 1)) == 0;
|
|
}
|
|
|
|
#define CHECK_ALIGNED(value, alignment) \
|
|
CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
|
|
|
|
#define DCHECK_ALIGNED(value, alignment) \
|
|
DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
|
|
|
|
#define DCHECK_ALIGNED_PARAM(value, alignment) \
|
|
DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
|
|
|
|
// Check whether an N-bit two's-complement representation can hold value.
|
|
static inline bool IsInt(int N, word value) {
|
|
CHECK_LT(0, N);
|
|
CHECK_LT(N, kBitsPerWord);
|
|
word limit = static_cast<word>(1) << (N - 1);
|
|
return (-limit <= value) && (value < limit);
|
|
}
|
|
|
|
static inline bool IsUint(int N, word value) {
|
|
CHECK_LT(0, N);
|
|
CHECK_LT(N, kBitsPerWord);
|
|
word limit = static_cast<word>(1) << N;
|
|
return (0 <= value) && (value < limit);
|
|
}
|
|
|
|
static inline bool IsAbsoluteUint(int N, word value) {
|
|
CHECK_LT(0, N);
|
|
CHECK_LT(N, kBitsPerWord);
|
|
if (value < 0) value = -value;
|
|
return IsUint(N, value);
|
|
}
|
|
|
|
static inline uint16_t Low16Bits(uint32_t value) {
|
|
return static_cast<uint16_t>(value);
|
|
}
|
|
|
|
static inline uint16_t High16Bits(uint32_t value) {
|
|
return static_cast<uint16_t>(value >> 16);
|
|
}
|
|
|
|
static inline uint32_t Low32Bits(uint64_t value) {
|
|
return static_cast<uint32_t>(value);
|
|
}
|
|
|
|
static inline uint32_t High32Bits(uint64_t value) {
|
|
return static_cast<uint32_t>(value >> 32);
|
|
}
|
|
|
|
// A static if which determines whether to return type A or B based on the condition boolean.
|
|
template <bool condition, typename A, typename B>
|
|
struct TypeStaticIf {
|
|
typedef A type;
|
|
};
|
|
|
|
// Specialization to handle the false case.
|
|
template <typename A, typename B>
|
|
struct TypeStaticIf<false, A, B> {
|
|
typedef B type;
|
|
};
|
|
|
|
// Type identity.
|
|
template <typename T>
|
|
struct TypeIdentity {
|
|
typedef T type;
|
|
};
|
|
|
|
// Like sizeof, but count how many bits a type takes. Pass type explicitly.
|
|
template <typename T>
|
|
static constexpr size_t BitSizeOf() {
|
|
return sizeof(T) * CHAR_BIT;
|
|
}
|
|
|
|
// Like sizeof, but count how many bits a type takes. Infers type from parameter.
|
|
template <typename T>
|
|
static constexpr size_t BitSizeOf(T x) {
|
|
return sizeof(T) * CHAR_BIT;
|
|
}
|
|
|
|
// For rounding integers.
|
|
template<typename T>
|
|
static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
|
|
|
|
template<typename T>
|
|
static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
|
|
return
|
|
DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
|
|
(x & -n);
|
|
}
|
|
|
|
template<typename T>
|
|
static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
|
|
|
|
template<typename T>
|
|
static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
|
|
return RoundDown(x + n - 1, n);
|
|
}
|
|
|
|
// For aligning pointers.
|
|
template<typename T>
|
|
static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
|
|
|
|
template<typename T>
|
|
static inline T* AlignDown(T* x, uintptr_t n) {
|
|
return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
|
|
}
|
|
|
|
template<typename T>
|
|
static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
|
|
|
|
template<typename T>
|
|
static inline T* AlignUp(T* x, uintptr_t n) {
|
|
return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
|
|
}
|
|
|
|
namespace utils {
|
|
namespace detail { // Private, implementation-specific namespace. Do not poke outside of this file.
|
|
template <typename T>
|
|
static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) {
|
|
return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1);
|
|
}
|
|
} // namespace detail
|
|
} // namespace utils
|
|
|
|
// Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
|
|
// figure 3-3, page 48, where the function is called clp2.
|
|
template <typename T>
|
|
static constexpr inline T RoundUpToPowerOfTwo(T x) {
|
|
return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1;
|
|
}
|
|
|
|
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
|
|
// figure 3-3, page 48, where the function is called clp2.
|
|
static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) {
|
|
x = x - 1;
|
|
x = x | (x >> 1);
|
|
x = x | (x >> 2);
|
|
x = x | (x >> 4);
|
|
x = x | (x >> 8);
|
|
x = x | (x >> 16);
|
|
return x + 1;
|
|
}
|
|
|
|
// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
|
|
template <typename T>
|
|
static constexpr ssize_t MostSignificantBit(T value) {
|
|
return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1);
|
|
}
|
|
|
|
// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
|
|
template <typename T>
|
|
static constexpr size_t MinimumBitsToStore(T value) {
|
|
return static_cast<size_t>(MostSignificantBit(value) + 1);
|
|
}
|
|
|
|
template<typename T>
|
|
static constexpr int CLZ(T x) {
|
|
static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long"); // NOLINT [runtime/int] [4]
|
|
return (sizeof(T) == sizeof(uint32_t))
|
|
? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0
|
|
: __builtin_clzll(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static constexpr int CTZ(T x) {
|
|
return (sizeof(T) == sizeof(uint32_t))
|
|
? __builtin_ctz(x)
|
|
: __builtin_ctzll(x);
|
|
}
|
|
|
|
template<typename T>
|
|
static constexpr int POPCOUNT(T x) {
|
|
return (sizeof(T) == sizeof(uint32_t))
|
|
? __builtin_popcount(x)
|
|
: __builtin_popcountll(x);
|
|
}
|
|
|
|
static inline uint32_t PointerToLowMemUInt32(const void* p) {
|
|
uintptr_t intp = reinterpret_cast<uintptr_t>(p);
|
|
DCHECK_LE(intp, 0xFFFFFFFFU);
|
|
return intp & 0xFFFFFFFFU;
|
|
}
|
|
|
|
static inline bool NeedsEscaping(uint16_t ch) {
|
|
return (ch < ' ' || ch > '~');
|
|
}
|
|
|
|
// Interpret the bit pattern of input (type U) as type V. Requires the size
|
|
// of V >= size of U (compile-time checked).
|
|
template<typename U, typename V>
|
|
static inline V bit_cast(U in) {
|
|
COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v);
|
|
union {
|
|
U u;
|
|
V v;
|
|
} tmp;
|
|
tmp.u = in;
|
|
return tmp.v;
|
|
}
|
|
|
|
std::string PrintableChar(uint16_t ch);
|
|
|
|
// Returns an ASCII string corresponding to the given UTF-8 string.
|
|
// Java escapes are used for non-ASCII characters.
|
|
std::string PrintableString(const char* utf8);
|
|
|
|
// Tests whether 's' starts with 'prefix'.
|
|
bool StartsWith(const std::string& s, const char* prefix);
|
|
|
|
// Tests whether 's' starts with 'suffix'.
|
|
bool EndsWith(const std::string& s, const char* suffix);
|
|
|
|
// Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
|
|
// one of which is probably more useful to you.
|
|
// Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
|
|
// "[[I" would be "int[][]", "[Ljava/lang/String;" would be
|
|
// "java.lang.String[]", and so forth.
|
|
std::string PrettyDescriptor(mirror::String* descriptor)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
std::string PrettyDescriptor(const char* descriptor);
|
|
std::string PrettyDescriptor(mirror::Class* klass)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
std::string PrettyDescriptor(Primitive::Type type);
|
|
|
|
// Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
|
|
// "int a.b.C.f" (depending on the value of 'with_type').
|
|
std::string PrettyField(mirror::ArtField* f, bool with_type = true)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
|
|
|
|
// Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
|
|
// "a.b.C.m(II)V" (depending on the value of 'with_signature').
|
|
std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
|
|
|
|
// Returns a human-readable form of the name of the *class* of the given object.
|
|
// So given an instance of java.lang.String, the output would
|
|
// be "java.lang.String". Given an array of int, the output would be "int[]".
|
|
// Given String.class, the output would be "java.lang.Class<java.lang.String>".
|
|
std::string PrettyTypeOf(mirror::Object* obj)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
|
|
// Returns a human-readable form of the type at an index in the specified dex file.
|
|
// Example outputs: char[], java.lang.String.
|
|
std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
|
|
|
|
// Returns a human-readable form of the name of the given class.
|
|
// Given String.class, the output would be "java.lang.Class<java.lang.String>".
|
|
std::string PrettyClass(mirror::Class* c)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
|
|
// Returns a human-readable form of the name of the given class with its class loader.
|
|
std::string PrettyClassAndClassLoader(mirror::Class* c)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
|
|
// Returns a human-readable size string such as "1MB".
|
|
std::string PrettySize(int64_t size_in_bytes);
|
|
|
|
// Returns a human-readable time string which prints every nanosecond while trying to limit the
|
|
// number of trailing zeros. Prints using the largest human readable unit up to a second.
|
|
// e.g. "1ms", "1.000000001s", "1.001us"
|
|
std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
|
|
|
|
// Format a nanosecond time to specified units.
|
|
std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
|
|
size_t max_fraction_digits);
|
|
|
|
// Get the appropriate unit for a nanosecond duration.
|
|
TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
|
|
|
|
// Get the divisor to convert from a nanoseconds to a time unit.
|
|
uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
|
|
|
|
// Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
|
|
// of the JNI spec.
|
|
std::string MangleForJni(const std::string& s);
|
|
|
|
// Turn "java.lang.String" into "Ljava/lang/String;".
|
|
std::string DotToDescriptor(const char* class_name);
|
|
|
|
// Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
|
|
// java.lang.Class.getName().
|
|
std::string DescriptorToDot(const char* descriptor);
|
|
|
|
// Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
|
|
// java.lang.Class.getName().
|
|
std::string DescriptorToName(const char* descriptor);
|
|
|
|
// Tests for whether 's' is a valid class name in the three common forms:
|
|
bool IsValidBinaryClassName(const char* s); // "java.lang.String"
|
|
bool IsValidJniClassName(const char* s); // "java/lang/String"
|
|
bool IsValidDescriptor(const char* s); // "Ljava/lang/String;"
|
|
|
|
// Returns whether the given string is a valid field or method name,
|
|
// additionally allowing names that begin with '<' and end with '>'.
|
|
bool IsValidMemberName(const char* s);
|
|
|
|
// Returns the JNI native function name for the non-overloaded method 'm'.
|
|
std::string JniShortName(mirror::ArtMethod* m)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
// Returns the JNI native function name for the overloaded method 'm'.
|
|
std::string JniLongName(mirror::ArtMethod* m)
|
|
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
|
|
|
|
bool ReadFileToString(const std::string& file_name, std::string* result);
|
|
|
|
// Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
|
|
std::string GetIsoDate();
|
|
|
|
// Returns the monotonic time since some unspecified starting point in milliseconds.
|
|
uint64_t MilliTime();
|
|
|
|
// Returns the monotonic time since some unspecified starting point in microseconds.
|
|
uint64_t MicroTime();
|
|
|
|
// Returns the monotonic time since some unspecified starting point in nanoseconds.
|
|
uint64_t NanoTime();
|
|
|
|
// Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
|
|
uint64_t ThreadCpuNanoTime();
|
|
|
|
// Converts the given number of nanoseconds to milliseconds.
|
|
static constexpr inline uint64_t NsToMs(uint64_t ns) {
|
|
return ns / 1000 / 1000;
|
|
}
|
|
|
|
// Converts the given number of milliseconds to nanoseconds
|
|
static constexpr inline uint64_t MsToNs(uint64_t ns) {
|
|
return ns * 1000 * 1000;
|
|
}
|
|
|
|
#if defined(__APPLE__)
|
|
// No clocks to specify on OS/X, fake value to pass to routines that require a clock.
|
|
#define CLOCK_REALTIME 0xebadf00d
|
|
#endif
|
|
|
|
// Sleep for the given number of nanoseconds, a bad way to handle contention.
|
|
void NanoSleep(uint64_t ns);
|
|
|
|
// Initialize a timespec to either a relative time (ms,ns), or to the absolute
|
|
// time corresponding to the indicated clock value plus the supplied offset.
|
|
void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
|
|
|
|
// Splits a string using the given separator character into a vector of
|
|
// strings. Empty strings will be omitted.
|
|
void Split(const std::string& s, char separator, std::vector<std::string>& result);
|
|
|
|
// Trims whitespace off both ends of the given string.
|
|
std::string Trim(std::string s);
|
|
|
|
// Joins a vector of strings into a single string, using the given separator.
|
|
template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator);
|
|
|
|
// Returns the calling thread's tid. (The C libraries don't expose this.)
|
|
pid_t GetTid();
|
|
|
|
// Returns the given thread's name.
|
|
std::string GetThreadName(pid_t tid);
|
|
|
|
// Returns details of the given thread's stack.
|
|
void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
|
|
|
|
// Reads data from "/proc/self/task/${tid}/stat".
|
|
void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
|
|
|
|
// Returns the name of the scheduler group for the given thread the current process, or the empty string.
|
|
std::string GetSchedulerGroupName(pid_t tid);
|
|
|
|
// Sets the name of the current thread. The name may be truncated to an
|
|
// implementation-defined limit.
|
|
void SetThreadName(const char* thread_name);
|
|
|
|
// Dumps the native stack for thread 'tid' to 'os'.
|
|
void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
|
|
mirror::ArtMethod* current_method = nullptr)
|
|
NO_THREAD_SAFETY_ANALYSIS;
|
|
|
|
// Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
|
|
void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
|
|
|
|
// Find $ANDROID_ROOT, /system, or abort.
|
|
const char* GetAndroidRoot();
|
|
|
|
// Find $ANDROID_DATA, /data, or abort.
|
|
const char* GetAndroidData();
|
|
// Find $ANDROID_DATA, /data, or return nullptr.
|
|
const char* GetAndroidDataSafe(std::string* error_msg);
|
|
|
|
// Returns the dalvik-cache location, or dies trying. subdir will be
|
|
// appended to the cache location.
|
|
std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
|
|
// Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
|
|
// have_android_data will be set to true if we have an ANDROID_DATA that exists,
|
|
// dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
|
|
// The flag is_global_cache tells whether this cache is /data/dalvik-cache.
|
|
void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
|
|
bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache);
|
|
|
|
// Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
|
|
// rooted at cache_location.
|
|
bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
|
|
std::string* filename, std::string* error_msg);
|
|
// Returns the absolute dalvik-cache path for a DexFile or OatFile, or
|
|
// dies trying. The path returned will be rooted at cache_location.
|
|
std::string GetDalvikCacheFilenameOrDie(const char* file_location,
|
|
const char* cache_location);
|
|
|
|
// Returns the system location for an image
|
|
std::string GetSystemImageFilename(const char* location, InstructionSet isa);
|
|
|
|
// Returns an .odex file name next adjacent to the dex location.
|
|
// For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
|
|
// Note: does not support multidex location strings.
|
|
std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
|
|
|
|
// Check whether the given magic matches a known file type.
|
|
bool IsZipMagic(uint32_t magic);
|
|
bool IsDexMagic(uint32_t magic);
|
|
bool IsOatMagic(uint32_t magic);
|
|
|
|
// Wrapper on fork/execv to run a command in a subprocess.
|
|
bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
|
|
|
|
class VoidFunctor {
|
|
public:
|
|
template <typename A>
|
|
inline void operator() (A a) const {
|
|
UNUSED(a);
|
|
}
|
|
|
|
template <typename A, typename B>
|
|
inline void operator() (A a, B b) const {
|
|
UNUSED(a);
|
|
UNUSED(b);
|
|
}
|
|
|
|
template <typename A, typename B, typename C>
|
|
inline void operator() (A a, B b, C c) const {
|
|
UNUSED(a);
|
|
UNUSED(b);
|
|
UNUSED(c);
|
|
}
|
|
};
|
|
|
|
// Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
|
|
struct FreeDelete {
|
|
// NOTE: Deleting a const object is valid but free() takes a non-const pointer.
|
|
void operator()(const void* ptr) const {
|
|
free(const_cast<void*>(ptr));
|
|
}
|
|
};
|
|
|
|
// Alias for std::unique_ptr<> that uses the C function free() to delete objects.
|
|
template <typename T>
|
|
using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
|
|
|
|
void PushWord(std::vector<uint8_t>* buf, int32_t data);
|
|
|
|
void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* buf);
|
|
void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* buf);
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_UTILS_H_
|