Files
Linux_Drivers/freertos/cvitek/common/include/cv1835/linux/log2.h
carbon ca03037500 freertos: release the generic version source code
freertos runs on the second core (small one) of the CPU
2023-10-19 14:31:43 +08:00

254 lines
11 KiB
C

/* Integer base 2 logarithm calculation
*
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _LINUX_LOG2_H
#define _LINUX_LOG2_H
#include <linux/fls.h>
#include <linux/fls64.h>
#include <linux/types.h>
#include <linux/bitops.h>
/*
* non-constant log of base 2 calculators
* - the arch may override these in asm/bitops.h if they can be implemented
* more efficiently than using fls() and fls64()
* - the arch is not required to handle n==0 if implementing the fallback
*/
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
static inline __attribute__((const)) int __ilog2_u32(u32 n)
{
return fls(n) - 1;
}
#endif
#ifndef CONFIG_ARCH_HAS_ILOG2_U64
static inline __attribute__((const)) int __ilog2_u64(u64 n)
{
return fls64(n) - 1;
}
#endif
/*
* Determine whether some value is a power of two, where zero is
* *not* considered a power of two.
*/
static inline __attribute__((const)) bool is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/*
* round up to nearest power of two
*/
static inline __attribute__((const)) unsigned long
__roundup_pow_of_two(unsigned long n)
{
return 1UL << fls_long(n - 1);
}
/*
* round down to nearest power of two
*/
static inline __attribute__((const)) unsigned long
__rounddown_pow_of_two(unsigned long n)
{
return 1UL << (fls_long(n) - 1);
}
/**
* ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
* @n - parameter
*
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
(__builtin_constant_p(n) ? \
((n) < 2 ? 0 : \
(n) & (1ULL << 63) ? \
63 : \
(n) & (1ULL << 62) ? \
62 : \
(n) & (1ULL << 61) ? \
61 : \
(n) & (1ULL << 60) ? \
60 : \
(n) & (1ULL << 59) ? \
59 : \
(n) & (1ULL << 58) ? \
58 : \
(n) & (1ULL << 57) ? \
57 : \
(n) & (1ULL << 56) ? \
56 : \
(n) & (1ULL << 55) ? \
55 : \
(n) & (1ULL << 54) ? \
54 : \
(n) & (1ULL << 53) ? \
53 : \
(n) & (1ULL << 52) ? \
52 : \
(n) & (1ULL << 51) ? \
51 : \
(n) & (1ULL << 50) ? \
50 : \
(n) & (1ULL << 49) ? \
49 : \
(n) & (1ULL << 48) ? \
48 : \
(n) & (1ULL << 47) ? \
47 : \
(n) & (1ULL << 46) ? \
46 : \
(n) & (1ULL << 45) ? \
45 : \
(n) & (1ULL << 44) ? \
44 : \
(n) & (1ULL << 43) ? \
43 : \
(n) & (1ULL << 42) ? \
42 : \
(n) & (1ULL << 41) ? \
41 : \
(n) & (1ULL << 40) ? \
40 : \
(n) & (1ULL << 39) ? \
39 : \
(n) & (1ULL << 38) ? \
38 : \
(n) & (1ULL << 37) ? \
37 : \
(n) & (1ULL << 36) ? \
36 : \
(n) & (1ULL << 35) ? \
35 : \
(n) & (1ULL << 34) ? \
34 : \
(n) & (1ULL << 33) ? \
33 : \
(n) & (1ULL << 32) ? \
32 : \
(n) & (1ULL << 31) ? \
31 : \
(n) & (1ULL << 30) ? \
30 : \
(n) & (1ULL << 29) ? \
29 : \
(n) & (1ULL << 28) ? \
28 : \
(n) & (1ULL << 27) ? \
27 : \
(n) & (1ULL << 26) ? \
26 : \
(n) & (1ULL << 25) ? \
25 : \
(n) & (1ULL << 24) ? \
24 : \
(n) & (1ULL << 23) ? \
23 : \
(n) & (1ULL << 22) ? \
22 : \
(n) & (1ULL << 21) ? \
21 : \
(n) & (1ULL << 20) ? \
20 : \
(n) & (1ULL << 19) ? \
19 : \
(n) & (1ULL << 18) ? \
18 : \
(n) & (1ULL << 17) ? \
17 : \
(n) & (1ULL << 16) ? \
16 : \
(n) & (1ULL << 15) ? \
15 : \
(n) & (1ULL << 14) ? \
14 : \
(n) & (1ULL << 13) ? \
13 : \
(n) & (1ULL << 12) ? \
12 : \
(n) & (1ULL << 11) ? \
11 : \
(n) & (1ULL << 10) ? \
10 : \
(n) & (1ULL << 9) ? \
9 : \
(n) & (1ULL << 8) ? \
8 : \
(n) & (1ULL << 7) ? \
7 : \
(n) & (1ULL << 6) ? \
6 : \
(n) & (1ULL << 5) ? \
5 : \
(n) & (1ULL << 4) ? \
4 : \
(n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : 1) : \
(sizeof(n) <= 4) ? __ilog2_u32(n) : __ilog2_u64(n))
/**
* roundup_pow_of_two - round the given value up to nearest power of two
* @n - parameter
*
* round the given value up to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define roundup_pow_of_two(n) \
(__builtin_constant_p(n) ? \
((n == 1) ? 1 : (1UL << (ilog2((n)-1) + 1))) : \
__roundup_pow_of_two(n))
/**
* rounddown_pow_of_two - round the given value down to nearest power of two
* @n - parameter
*
* round the given value down to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define rounddown_pow_of_two(n) \
(__builtin_constant_p(n) ? ((1UL << ilog2(n))) : \
__rounddown_pow_of_two(n))
/**
* order_base_2 - calculate the (rounded up) base 2 order of the argument
* @n: parameter
*
* The first few values calculated by this routine:
* ob2(0) = 0
* ob2(1) = 0
* ob2(2) = 1
* ob2(3) = 2
* ob2(4) = 2
* ob2(5) = 3
* ... and so on.
*/
static inline __attribute_const__ int __order_base_2(unsigned long n)
{
return n > 1 ? ilog2(n - 1) + 1 : 0;
}
#define order_base_2(n) \
(__builtin_constant_p(n) ? \
(((n) == 0 || (n) == 1) ? 0 : ilog2((n)-1) + 1) : \
__order_base_2(n))
#endif /* _LINUX_LOG2_H */